Coarse-Graining of Molecular Liquids in Time and Space
分子液体在时间和空间上的粗粒化
基本信息
- 批准号:1665466
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Marina Guenza of the University of Oregon is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry. Dr. Guenza develops computational and theoretical methods to study complex molecular liquid. Such computer simulations are useful because they can explain experimental findings based on the molecular nature of the liquid. However, they have severe limitations in the size of the system that they can study. To allow simulation of larger systems, Guenza and coworkers employ a kind of coarse graining, the Integral Equation theory of Coarse-Graining (IECG). This approach uses only essential details in the description of the molecules thereby reducing computational time. This allows for the study of large and more complex systems. The method has been shown to be very accurate in its predictions of structural, thermodynamic, and dynamical properties. Further optimization of the method, its extension to many systems, and making the method accessible to the scientists that want to use it, are the main goals of this project. A second aspect of the project focuses on the further development of an approach to study proteins, nuclear acids and their complexes. Guenza and her research group engage in outreach activities to high school students from rural Oregon school districts. The focus of this research is to extend the range of length scales and time scales where complex molecular liquids can be simulated. In the first project, Guenza and coworkers are extending the capabilities of the Integral Equation theory of Coarse-Graining (IECG) approach to treat non-uniform molecular liquids, for example, at solid interfaces. In the second project, they are working to extend the Langevin Equation for Protein Dynamics (LE4PD) to treat proteins, nucleic acids, and their complexes. The approach is based on a Langevin equation for the dynamics of macromolecules in solution, which also accounts for the presence of local conformational barriers and the internal hydrophobic region in the macromolecule. Developing the theory to describe the long-time barrier-crossing dynamics by integration with Markov State Models is a key component of this work.
俄勒冈州大学的Marina Guenza获得了化学系化学理论、模型和计算方法项目的奖项。 Guenza博士开发计算和理论方法来研究复杂的分子液体。这种计算机模拟是有用的,因为它们可以解释基于液体分子性质的实验结果。然而,他们在他们可以研究的系统的大小方面有严重的限制。 为了模拟更大的系统,Guenza及其同事采用了一种粗粒化,即粗粒化积分方程理论(IECG)。 这种方法只使用必要的细节 从而减少计算时间。 这允许研究大型和更复杂的系统。该方法已被证明是非常准确的结构,热力学和动力学性质的预测。该项目的主要目标是进一步优化该方法,将其扩展到许多系统,并使想要使用该方法的科学家能够使用该方法。该项目的第二个方面侧重于进一步发展研究蛋白质、核酸及其复合物的方法。Guenza和她的研究小组从事外展活动,以高中学生从农村俄勒冈州学区。本研究的重点是扩展复杂分子液体模拟的长度尺度和时间尺度范围。 在第一个项目中,Guenza及其同事正在扩展粗粒化积分方程理论(IECG)方法的能力,以处理非均匀分子液体,例如固体界面。在第二个项目中,他们正在努力扩展朗之万蛋白质动力学方程(LE4PD)来处理蛋白质,核酸及其复合物。该方法是基于一个朗之万方程的大分子在溶液中的动力学,这也占局部构象障碍和内部疏水区域的大分子的存在下。发展理论来描述长时间跨越障碍的动态与马尔可夫状态模型的整合是这项工作的一个关键组成部分。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparison between slow anisotropic LE4PD fluctuations and the principal component analysis modes of ubiquitin
- DOI:10.1063/5.0041211
- 发表时间:2021-03-28
- 期刊:
- 影响因子:4.4
- 作者:Beyerle, E. R.;Guenza, M. G.
- 通讯作者:Guenza, M. G.
Can pure polymer liquids be represented at two different resolutions simultaneously?
- DOI:10.1063/1.5115791
- 发表时间:2019-08-14
- 期刊:
- 影响因子:4.4
- 作者:Dinpajooh, M.;Guenza, M. G.
- 通讯作者:Guenza, M. G.
Kinetics analysis of ubiquitin local fluctuations with Markov state modeling of the LE4PD normal modes
- DOI:10.1063/1.5123513
- 发表时间:2019-10-28
- 期刊:
- 影响因子:4.4
- 作者:Beyerle, Eric P.;Guenza, Marina G.
- 通讯作者:Guenza, Marina G.
Correction to “On the Density Dependence of the Integral Equation Coarse-Graining Effective Potential”
对“积分方程粗粒度有效势的密度依赖性”的修正
- DOI:10.1021/acs.jpcb.9b01664
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Dinpajooh, M.;Guenza, M. G.
- 通讯作者:Guenza, M. G.
Coarse-graining simulation approaches for polymer melts: the effect of potential range on computational efficiency
- DOI:10.1039/c8sm00868j
- 发表时间:2018-09-21
- 期刊:
- 影响因子:3.4
- 作者:Dinpajooh, Mohammadhasan;Guenza, Marina G.
- 通讯作者:Guenza, Marina G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marina Guenza其他文献
A Comparison of Collective Coordinates for Analyzing Protein Dynamics
- DOI:
10.1016/j.bpj.2017.11.1294 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Eric R. Beyerle;Marina Guenza - 通讯作者:
Marina Guenza
Marina Guenza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marina Guenza', 18)}}的其他基金
Multi-scale Modeling of Macromolecular Liquids, and Macromolecules in Solution
高分子液体和溶液中高分子的多尺度建模
- 批准号:
2154999 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Coarse-Graining of Complex Liquids: Structure and Dynamics
复杂液体的粗粒化:结构和动力学
- 批准号:
1362500 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Theoretical Approaches to Bridge Timescales in Polymer Dynamics
聚合物动力学中桥接时间尺度的理论方法
- 批准号:
0804145 - 财政年份:2008
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Cooperative Dynamics in Polymer Fluids and their Mixtures
聚合物流体及其混合物中的协同动力学
- 批准号:
0509808 - 财政年份:2005
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Cooperative Dynamics in Polymer Fluids: Melts, Blends, and their Glass Transition
聚合物流体中的协同动力学:熔体、共混物及其玻璃化转变
- 批准号:
0207949 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Correlated Many-Chain Dynamics: Slow Modes, Entanglements, and Glass Transition.
相关的多链动力学:慢速模式、纠缠和玻璃化转变。
- 批准号:
9971687 - 财政年份:1999
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似海外基金
Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
- 批准号:
2350340 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Building Predictive Coarse-Graining Schemes for Complex Microbial Ecosystems
为复杂的微生物生态系统构建预测粗粒度方案
- 批准号:
2310746 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
- 批准号:
23KJ0732 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory and Application of Coarse Graining
粗粒度理论与应用
- 批准号:
RGPIN-2021-03852 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Discovery Grants Program - Individual
Study of both the construction of quantum gravity via coarse-graining of gauge theory and energy on curved spacetime
研究通过粗粒度规范理论构建量子引力和弯曲时空能量
- 批准号:
22K03596 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermodynamic inequalities under coarse-graining
粗粒度下的热力学不等式
- 批准号:
22K13974 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CDS&E: AI-RHEO: Learning coarse-graining of complex fluids
CDS
- 批准号:
2204226 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Rigorous coarse-graining of defects at positive temperature
正温度下缺陷的严格粗晶化
- 批准号:
EP/W008041/1 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Chaos, Randomness, Coarse-Graining: Towards a New Paradigm for Holography
混沌、随机性、粗粒度:走向全息术的新范式
- 批准号:
ST/W003546/1 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Chaos and coarse-graining in holography: towards a new paradigm for quantum gravity
全息术中的混沌和粗粒度:迈向量子引力的新范式
- 批准号:
EP/X030334/1 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Research Grant














{{item.name}}会员




