Nonlinear Partial Differential Equations
非线性偏微分方程
基本信息
- 批准号:9971713
- 负责人:
- 金额:$ 14.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2003-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will study mathematical models for superconductivity and liquid crystals. These materials are described by models posed at a variety of length scales.The intent of the research is to investigate the qualitative features of the solutions to these models, analyze the thresholds at which the models predict change in the materials' basic characteristics (changes of phase) and investigate the connections between the solutions of different models at different length scales. The methods to be employed are analysis of partial differential equations, asymptotic methods, homogenization, and numerical simulation.Superconductors are used in electronic sensing devices, magnets and power transmission.Applications for liquid crystals are visual displays and optical screens.These are examples of materials for which their characteristic features (their phases) can change dramatically if subjected to electro-magnetic fields or variations in temperature.This phenomenon is a great asset (essentially as if one has two materials in the same location) but it is also a difficult feature to control.The goal of the project is to add to the understanding of the behavior of the models and their interrelations so that these materials can be used more effectively. This will be done by means of mathematical analysis of these models in general settings.
首席研究员将研究超导和液晶的数学模型。这些材料由不同长度尺度下的模型描述,本研究的目的是研究这些模型解的定性特征,分析模型预测材料基本特性变化(相变)的阈值,并研究不同长度尺度下不同模型解之间的联系。所采用的方法是偏微分方程分析、渐近方法、均匀化和数值模拟。超导体用于电子传感器件,磁铁和电力传输。液晶的应用是视觉显示器和光学屏幕。这些是材料的例子,它们的特性特征如果受到电磁场或温度变化的影响,(它们的相位)会发生巨大的变化。这种现象是一种巨大的财富(基本上就像一个人在同一位置有两种材料),但它也是一个难以控制的特征。该项目的目标是增加对模型行为及其相互关系的理解,以便更有效地使用这些材料。 这将通过在一般设置中对这些模型进行数学分析来完成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Phillips其他文献
Associations between social behaviour and proinflammatory immune activation are modulated by age in a free-ranging primate population
在一个自由放养的灵长类动物群体中,社会行为和促炎免疫激活之间的关联受年龄的调节。
- DOI:
10.1016/j.anbehav.2024.10.035 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:2.100
- 作者:
Eve B. Cooper;Connor Whalen;Nina Beeby;Josué E. Negron-Del Valle;Daniel Phillips;Cayo Biobank Research Unit;Noah Snyder-Mackler;Lauren J.N. Brent;James P. Higham - 通讯作者:
James P. Higham
Assessing performance of local materials for the treatment of dry weather flows in open drains: Results of semi-controlled field experiment research in Bangalore, India
评估用于处理明渠旱季流量的当地材料的性能:印度班加罗尔半控制现场实验研究的结果
- DOI:
10.1016/j.ecoleng.2021.106506 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:4.100
- 作者:
Priyanka Jamwal;Daniel Phillips;Ramya Gowda - 通讯作者:
Ramya Gowda
Cocaine‐Induced Intracerebral Hemorrhage in a Patient with Cerebral Amyloid Angiopathy *
脑淀粉样血管病患者可卡因诱发的脑出血 *
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.6
- 作者:
M. Shvartsbeyn;Daniel Phillips;Michael A. Markey;A. Morrison;J. Dejong;R. Castellani - 通讯作者:
R. Castellani
emHOTAIR/em interacts with PRC2 complex regulating the regional preadipocyte transcriptome and human fat distribution
- DOI:
10.1016/j.celrep.2022.111136 - 发表时间:
2022-07-26 - 期刊:
- 影响因子:6.900
- 作者:
Feng-Chih Kuo;Matt J. Neville;Rugivan Sabaratnam;Agata Wesolowska-Andersen;Daniel Phillips;Laura B.L. Wittemans;Andrea D. van Dam;Nellie Y. Loh;Marijana Todorčević;Nathan Denton;Katherine A. Kentistou;Peter K. Joshi;Constantinos Christodoulides;Claudia Langenberg;Philippe Collas;Fredrik Karpe;Katherine E. Pinnick - 通讯作者:
Katherine E. Pinnick
Assessing modified HEART scores with high-sensitivity troponin for low-risk chest pain in the emergency department
- DOI:
10.1007/s11739-024-03845-8 - 发表时间:
2024-12-28 - 期刊:
- 影响因子:3.800
- 作者:
Katherine A. Holmes;Samuel A. Ralston;Daniel Phillips;Jeffy Jose;Liana Milis;Radhika Cheeti;Timothy Muirheid;Hao Wang - 通讯作者:
Hao Wang
Daniel Phillips的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Phillips', 18)}}的其他基金
NSF Project Scoping Workshop: Towards Precise & Accurate Calculations of Neutrinoless Double-Beta Decay
NSF 项目范围界定研讨会:走向精确
- 批准号:
2226819 - 财政年份:2022
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Frameworks: Bayesian Analysis of Nuclear Dynamics
框架:核动力学贝叶斯分析
- 批准号:
2004601 - 财政年份:2020
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
Analysis of Defects in Soft Matter Systems
软物质系统缺陷分析
- 批准号:
1412840 - 财政年份:2014
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Mathematical Modeling and Analysis of Materials
材料的数学建模和分析
- 批准号:
0630496 - 财政年份:2006
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Nonlinear PDEs for Soft Matter Systems
软物质系统的非线性偏微分方程
- 批准号:
0604839 - 财政年份:2006
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Ferroelectric phenomena in soft matter systems
合作研究:FRG:软物质系统中的铁电现象
- 批准号:
0456286 - 财政年份:2005
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
2004 Gordon Research Conference on Photonuclear Reactions; August 1-6, 2004; Tilton, NH
2004年戈登光核反应研究会议;
- 批准号:
0415619 - 财政年份:2004
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Analysis of Nonlinear Systems Modeling Partially Ordered Materials
偏序材料非线性系统建模分析
- 批准号:
0306516 - 财政年份:2003
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differenial Equations
数学科学:非线性偏微分方程
- 批准号:
9622305 - 财政年份:1996
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations"
数学科学:非线性偏微分方程》
- 批准号:
9306199 - 财政年份:1993
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
- 批准号:
23K03165 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
- 批准号:
2307097 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2318032 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 14.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
- 批准号:
2206675 - 财政年份:2022
- 资助金额:
$ 14.2万 - 项目类别:
Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 14.2万 - 项目类别:
Standard Grant














{{item.name}}会员




