Mathematical Sciences: Nonlinear Partial Differenial Equations
数学科学:非线性偏微分方程
基本信息
- 批准号:9622305
- 负责人:
- 金额:$ 7.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 2000-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9622305 Phillips This project is a study of differential equations from two areas, the Ginzburg--Landau equations as they apply to superconductivity and the calculus of variations related to nonlinear elasticity. Features of solutions to the Ginzburg--Landau equations are to be studied. Experimental evidence for the materials they model and numerical simulations for the equations themselves indicate that stable solutions contain coherent pattern formations (vortex arrays). It is proposed to analyze solutions for simple geometries (e.g. cylindrical rods and thin films). The principal investigator seeks to establish the existence of these patterns and to understand the mechanisms that bring them about. He also seeks to determine how one can control the patterns (pin the vortex distributions). Doing this will lead to a better understanding of the models and to estimates for the effectiveness of a material to carry a supercurrent when subjected to an applied current or a magnetic field. The second part of the proposal deals with the regularity of solutions to variational problems related to nonlinear elasticity. P. Bauman and the principal investigator have established that solutions to certain boundary value problems from two dimensional elasticity are locally Lipschitz continuous homeomorphisms. It is proposed to investigate whether or not these solutions have singularities. Analytically this is to ask if the solutions are differentiable everywhere. %%% Scientists describe how a given material can conduct an electric current or how an elastic body can be twisted and bent by expressing such phenomena as solutions to mathematical equations (called partial differential equations) based on the underlying physics in each instance. The principal investigator studies the features of these solutions. For example in the case of a superconducting material (a material that can conduct electricity very efficiently) it is observ ed that the current naturally circulates around a symmetric array of points called vorticies. It is also observed that if the current is sufficiently strong the array begins to drift causing the current to die off and superconductivity is lost. Pattern formation and the onset of instability are features that can be investigated through the solutions. Understanding and being able to predict these features is important both for theory and engineering applications. ***
9622305菲利普斯 这个项目是从两个方面研究微分方程, 应用于超导的金兹伯格-朗道方程和与非线性弹性有关的变分法。特征 Ginzburg-朗道方程的解。 实验 他们所模拟的材料的证据和 方程本身表明,稳定的解决方案包含相干模式 形成(涡流阵列)。建议分析简单的解决方案 几何形状(例如圆柱棒和薄膜)。主要研究者 试图建立这些模式的存在,并了解 使其产生的机制。他还试图确定如何控制模式(钉涡分布)。这样做将有助于更好地理解模型并估计有效性 指一种材料在受到外加电流或磁场的作用时能产生超电流。该提案的第二部分涉及的是 与非线性弹性有关的变分问题的解。P.鲍曼和主要研究者已经确定,某些问题的解决方案 二维弹性力学的边值问题是局部Lipschitz边值问题 连续同胚建议调查这些是否 解具有奇异性。从分析上讲,这是在问解决方案是否 处处可微。 %%% 科学家描述了一种给定的材料如何传导电流,或者弹性体如何扭曲和弯曲, 数学方程(称为偏微分方程) 基于每种情况下的物理基础。主要研究者 研究了这些解决方案的特点。例如,在一个 超导材料(一种可以导电的材料, 艾德认为,电流自然地绕着 对称的点阵列称为涡。还观察到,如果 电流足够强,阵列开始漂移, 然后失去超导性。模式的形成和 不稳定性是可以通过解来研究的特征。 理解并能够预测这些特征对于以下两个方面都很重要: 理论和工程应用。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Phillips其他文献
Associations between social behaviour and proinflammatory immune activation are modulated by age in a free-ranging primate population
在一个自由放养的灵长类动物群体中,社会行为和促炎免疫激活之间的关联受年龄的调节。
- DOI:
10.1016/j.anbehav.2024.10.035 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:2.100
- 作者:
Eve B. Cooper;Connor Whalen;Nina Beeby;Josué E. Negron-Del Valle;Daniel Phillips;Cayo Biobank Research Unit;Noah Snyder-Mackler;Lauren J.N. Brent;James P. Higham - 通讯作者:
James P. Higham
Assessing performance of local materials for the treatment of dry weather flows in open drains: Results of semi-controlled field experiment research in Bangalore, India
评估用于处理明渠旱季流量的当地材料的性能:印度班加罗尔半控制现场实验研究的结果
- DOI:
10.1016/j.ecoleng.2021.106506 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:4.100
- 作者:
Priyanka Jamwal;Daniel Phillips;Ramya Gowda - 通讯作者:
Ramya Gowda
Cocaine‐Induced Intracerebral Hemorrhage in a Patient with Cerebral Amyloid Angiopathy *
脑淀粉样血管病患者可卡因诱发的脑出血 *
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:1.6
- 作者:
M. Shvartsbeyn;Daniel Phillips;Michael A. Markey;A. Morrison;J. Dejong;R. Castellani - 通讯作者:
R. Castellani
emHOTAIR/em interacts with PRC2 complex regulating the regional preadipocyte transcriptome and human fat distribution
- DOI:
10.1016/j.celrep.2022.111136 - 发表时间:
2022-07-26 - 期刊:
- 影响因子:6.900
- 作者:
Feng-Chih Kuo;Matt J. Neville;Rugivan Sabaratnam;Agata Wesolowska-Andersen;Daniel Phillips;Laura B.L. Wittemans;Andrea D. van Dam;Nellie Y. Loh;Marijana Todorčević;Nathan Denton;Katherine A. Kentistou;Peter K. Joshi;Constantinos Christodoulides;Claudia Langenberg;Philippe Collas;Fredrik Karpe;Katherine E. Pinnick - 通讯作者:
Katherine E. Pinnick
Assessing modified HEART scores with high-sensitivity troponin for low-risk chest pain in the emergency department
- DOI:
10.1007/s11739-024-03845-8 - 发表时间:
2024-12-28 - 期刊:
- 影响因子:3.800
- 作者:
Katherine A. Holmes;Samuel A. Ralston;Daniel Phillips;Jeffy Jose;Liana Milis;Radhika Cheeti;Timothy Muirheid;Hao Wang - 通讯作者:
Hao Wang
Daniel Phillips的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Phillips', 18)}}的其他基金
NSF Project Scoping Workshop: Towards Precise & Accurate Calculations of Neutrinoless Double-Beta Decay
NSF 项目范围界定研讨会:走向精确
- 批准号:
2226819 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Frameworks: Bayesian Analysis of Nuclear Dynamics
框架:核动力学贝叶斯分析
- 批准号:
2004601 - 财政年份:2020
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
Analysis of Defects in Soft Matter Systems
软物质系统缺陷分析
- 批准号:
1412840 - 财政年份:2014
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Mathematical Modeling and Analysis of Materials
材料的数学建模和分析
- 批准号:
0630496 - 财政年份:2006
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Nonlinear PDEs for Soft Matter Systems
软物质系统的非线性偏微分方程
- 批准号:
0604839 - 财政年份:2006
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Collaborative Research: FRG: Ferroelectric phenomena in soft matter systems
合作研究:FRG:软物质系统中的铁电现象
- 批准号:
0456286 - 财政年份:2005
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
2004 Gordon Research Conference on Photonuclear Reactions; August 1-6, 2004; Tilton, NH
2004年戈登光核反应研究会议;
- 批准号:
0415619 - 财政年份:2004
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Analysis of Nonlinear Systems Modeling Partially Ordered Materials
偏序材料非线性系统建模分析
- 批准号:
0306516 - 财政年份:2003
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
- 批准号:
9971713 - 财政年份:1999
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Partial Differential Equations"
数学科学:非线性偏微分方程》
- 批准号:
9306199 - 财政年份:1993
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
- 批准号:
1240744 - 财政年份:2012
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis - Spring 2010
CBMS 数学科学区域会议 - 非线性水波及其在波流相互作用和海啸中的应用 - 2010 年春季
- 批准号:
0938266 - 财政年份:2010
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
- 批准号:
0630571 - 财政年份:2007
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Nonlinear Dispersive and Wave Equations
NSF/CBMS 数学科学区域会议:非线性色散和波动方程
- 批准号:
0440945 - 财政年份:2005
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Mathematical Methods in Nonlinear Wave Propagation - May 13-17, 2002
NSF/CBMS 数学科学区域会议 - 非线性波传播的数学方法 - 2002 年 5 月 13-17 日
- 批准号:
0122208 - 财政年份:2002
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations & Their Applications to Evolving Surfaces, Phase Transitions & Stochastic Control
数学科学:非线性偏微分方程
- 批准号:
9817525 - 财政年份:1998
- 资助金额:
$ 7.38万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Elliptic Equations in Differential Geometry
数学科学:微分几何中的非线性椭圆方程
- 批准号:
9704861 - 财政年份:1997
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Interface Dynamics and Renormalization Methods for Nonlinear Systems of Equations
数学科学:非线性方程组的界面动力学和重整化方法
- 批准号:
9703530 - 财政年份:1997
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
- 批准号:
9796164 - 财政年份:1997
- 资助金额:
$ 7.38万 - 项目类别:
Standard Grant