Approximations and Modeling with Zonal Functions on Spheres and Euclidean Spaces
球体和欧几里得空间上的分区函数的近似和建模
基本信息
- 批准号:9972004
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Ragozin plans to investigate several topics connected withmultivariate polynomial and generalized spline (energy minimizing)approximations, numerical integration, and fast computational methods for multivariable potentials and related functions. These investigationswill aim to develop methods for approximating functional relationshipsamong (large) finite data sets when the underlying data points are drawn from finite dimensional spheres or other compact spaces with a high degree of homogeneity, or from high dimensional Euclidean spaces. The high degree of symmetry and homogeneity of spheres and Euclidean spaces,and the use of radial functions, which respect much of the symmetry and homogeneity, provide a major unifying feature of the different investigations. In each of these domains there exist a well defined and effectively computable set of (invariant) polynomial kernels whichdepend on many fewer parameters then the underlying space, but which can and will be used to develop the sought after approximation, integration and fast computational processes. The development of explicit approximation processes on spheres and Euclidean spaces, together with computable bounds on the errors in these processes, will enhance the infrastructure for practical scientific computation. By reliance on radial function expansions, practical computations based on scattered data sets become feasible. The fast computational methods forpolyharmonic radial functions in Euclidean spaces will extend existingmethods for thin-plate splines in ordinary three space, and facilitateeffective application of multivariate Laplacian spline interpolation andsmoothing techniques, including cross-validation, to extremely large data sets.Many scientific and engineering problems involve modelling the complexfunctional relationships between two, three or more continuousquantities. The aim of this research is to develop new mathematicaltechniques to approximate such relationships by simpler functions,together with estimates for how close these approximations come to thetruth. By use of combinations of simple functions which depend only onthe distance between two points in space or on the surface of a spheresuch as the earth, this work hopes to provide highly efficient means ofapproximation and modelling; computational codes which exploit thesemethods should be able to deal in practical time with extremely largedata sets. For example, existing methods based on exact modelling require several quadrillion operations for sets containing 100,000 points. Methods based on the approximations developed here will reduce this by afactor of a billion, so only several million operations are required.Todays computers can rapidly handle this number of operations.
Ragozin教授计划研究多变量多项式和广义样条(能量最小化)近似,数值积分和多变量势和相关函数的快速计算方法。 这些investigationwill的目的是开发方法近似的功能relationshipsamong(大)有限的数据集时,基本的数据点是从有限维领域或其他紧凑的空间具有高度的同质性,或从高维欧氏空间。 高度的对称性和均匀性的领域和欧几里德空间,并使用径向函数,其中尊重大部分的对称性和均匀性,提供了一个主要的统一功能的不同调查。在这些域中的每一个存在一个定义良好的和有效的可计算的(不变的)多项式内核,它依赖于少得多的参数,然后潜在的空间,但它可以并将被用来开发追求后的近似,积分和快速计算过程。球和欧氏空间上的显式近似过程的发展,以及这些过程中误差的可计算范围,将增强实际科学计算的基础设施。 通过依赖径向函数展开,基于分散数据集的实际计算变得可行。 欧氏空间中多调和径向函数的快速计算方法将扩展现有的三次空间中薄板样条的计算方法,并促进多元Laplacian样条插值和光滑技术(包括交叉验证)在超大数据集上的有效应用。本研究的目的是开发新的数学技术,通过更简单的函数来近似这种关系,以及估计这些近似值与真实值的接近程度。通过使用简单函数的组合,这些函数只依赖于空间中两点之间的距离或地球等球体表面上的距离,这项工作希望提供高效的近似和建模方法;利用这些方法的计算代码应该能够在实际时间内处理非常大的数据集。 例如,基于精确建模的现有方法需要对包含100,000个点的集合进行几次四边形运算。基于这里提出的近似方法将把这一过程减少十亿倍,因此只需要几百万次运算,今天的计算机可以迅速处理这么多的运算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ragozin其他文献
David Ragozin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ragozin', 18)}}的其他基金
Mathematical Sciences: Spline Smoothing and Derivative Estimations
数学科学:样条平滑和导数估计
- 批准号:
8509835 - 财政年份:1985
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
Mathematical Sciences and Computer Research: Spline Smoothing and Derivative Estimation
数学科学和计算机研究:样条平滑和导数估计
- 批准号:
8308349 - 财政年份:1983
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
- 批准号:
2337322 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 5.2万 - 项目类别:
Standard Grant