Stochastic Variational Problems: Approximation and Modelization Issues

随机变分问题:近似和建模问题

基本信息

  • 批准号:
    9972252
  • 负责人:
  • 金额:
    $ 11.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-15 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

This research proposal is centered around approximation issues instochastic programming, in particular as they arise in two quitechallenging problems: groundwater remediation and equilibria problems inan uncertain environment. The first of these requires dealing withstochastic programs where the `recourse' is determined by a system ofpartial differential equations. The `stochastic' equilibrium problemadds a new level of difficulty, rather than just optimizing one mustfind a mechanism to determine a price system under which the optimizationtakes place. Such equilibria have been derived by relying on fixed pointtheorems. Finally, because it's only possible to solve discretizedversions of stochastic optimization problems, it's of paramountimportance to investigate thoroughly approximation issues. Not only thequestion of approximating the stochastic process that describes theuncertainty but also how to improve the construction of this processfrom the available data and to analyze the effect this will have on the solution of the stochastic program.The field of stochastic programming provides mathematical tools forsolving and analyzing models for decision making under uncertainty.This project will be concerned with two significant and difficultapplications and with approximation issues: -- A problem in groundwater remediation which was selected becauseit requires both theoretical and computational developments. It's astochastic optimization problem where the state of the system isobtained by solving a partial differential equation whose coefficientsare rapidly oscillating (heterogeneous media) and stochastic (uncertaintyabout the media composition). The possibility of deriving anhomogenized version of this problem will also be investigated. -- Walras equilibrium problem in an uncertain environment. Thisproblem is selected because it adds a dimension to stochasticoptimization in that one must also find price systems (setting up an`equilibrium') under which this stochastic optimization must take place. -- Approximation issues in stochastic programming. The question ofhaving a reliable estimate for the parameters of a dynamic stochasticprogramming problem is raised. It is expected that a more comprehensive,approach which makes use of all the information available, rather thanjust the collected data will result in more reliable solutions forstochastic programming problems.
这项研究建议是围绕近似问题随机规划,特别是因为他们出现在两个quitechallenging问题:地下水修复和不确定环境中的平衡问题。 其中第一个要求处理随机程序的“追索权”是由一个系统ofpartial微分方程。“随机”均衡问题增加了一个新的难度,而不仅仅是优化一个必须找到一个机制,以确定一个价格体系下的优化发生。这样的平衡是由不动点定理导出的。 最后,由于随机最优化问题只能离散化求解,因此深入研究近似问题是非常重要的。本文不仅讨论描述不确定性的随机过程的近似问题,而且讨论如何根据现有数据改进随机过程的构造,并分析其对随机规划解的影响。随机规划领域提供了求解和分析不确定性决策模型的数学工具。本项目将涉及两个重要而困难的应用,即随机规划和随机规划。随机规划是随机规划的一个重要分支,它是随机规划的一个近似问题:--选择地下水修复中的一个问题,因为它需要理论和计算的发展。这是一个随机优化问题,系统的状态是通过求解一个偏微分方程获得的,该方程的系数是快速振荡的(非均匀介质)和随机的(介质成分的不确定性)。导出这个问题的非均匀化版本的可能性也将被调查。不确定环境下的Walras均衡问题这个问题被选中,因为它增加了一个维度,随机优化,其中一个还必须找到价格系统(建立一个“均衡”),在这个随机优化必须发生。 --随机规划中的近似问题。提出了动态随机规划问题的参数可靠估计问题。人们期望,一个更全面的方法,利用所有可用的信息,而不仅仅是收集的数据将导致更可靠的解决方案forstochastic规划问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Wets其他文献

Characterization theorems for stochastic programs
  • DOI:
    10.1007/bf01584541
  • 发表时间:
    1972-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Roger Wets
  • 通讯作者:
    Roger Wets
Programming under uncertainty: The complete problem
Stochastic programs with recourse: A basic theorem for multistage problems

Roger Wets的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Wets', 18)}}的其他基金

Stochastic Variational Problems: Equilibrium & Modeling Uncertainty
随机变分问题:平衡
  • 批准号:
    0705470
  • 财政年份:
    2007
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Stochastic Variational Problems: Optimization and Equilibrium
随机变分问题:优化和均衡
  • 批准号:
    0205699
  • 财政年份:
    2002
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Approximation in Stochastic Programming and Other Variational Problems
数学科学:随机规划和其他变分问题中的近似
  • 批准号:
    9625787
  • 财政年份:
    1996
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Approximation in Stochastic Programming and Other Variational Problems
数学科学:随机规划和其他变分问题中的近似
  • 批准号:
    9300930
  • 财政年份:
    1993
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Approximation Theory for Variational Problems with Applications to Random Composites and Stochastic Optimization Problems
数学科学:变分问题的逼近理论及其在随机组合和随机优化问题中的应用
  • 批准号:
    8922396
  • 财政年份:
    1990
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Solution and Approximation Techniques in Stochastic Optimization
随机优化中的求解和逼近技术
  • 批准号:
    8516450
  • 财政年份:
    1986
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Solution and Approximation Techniques in Stochastic Optimization
随机优化中的求解和逼近技术
  • 批准号:
    8542328
  • 财政年份:
    1985
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Solution and Approximation Techniques in Stochastic Optimization
随机优化中的求解和逼近技术
  • 批准号:
    8213852
  • 财政年份:
    1983
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Nondifferentiable Optimization
不可微优化
  • 批准号:
    7923272
  • 财政年份:
    1980
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant
Stochastic Optimization
随机优化
  • 批准号:
    7802864
  • 财政年份:
    1978
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant

相似海外基金

Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
  • 批准号:
    2424801
  • 财政年份:
    2024
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Non-Local Variational Problems with Applications to Data Science
非局部变分问题及其在数据科学中的应用
  • 批准号:
    2307971
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
  • 批准号:
    2306962
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
  • 批准号:
    23KJ0293
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
  • 批准号:
    2304432
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant
CRII: AF: Variational Inequality and Saddle Point Problems with Complex Constraints
CRII:AF:具有复杂约束的变分不等式和鞍点问题
  • 批准号:
    2245705
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
  • 批准号:
    2307273
  • 财政年份:
    2023
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Continuing Grant
Variational Problems with Singularities
奇点变分问题
  • 批准号:
    RGPIN-2019-05987
  • 财政年份:
    2022
  • 资助金额:
    $ 11.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了