Stability in Geometric Variational Problems
几何变分问题的稳定性
基本信息
- 批准号:2304432
- 负责人:
- 金额:$ 54.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many phenomena arising naturally in science, engineering, and mathematics can be described by configurations seeking to minimize some energy. For example, choosing an optimal driving route could involve minimizing the total distance traveled or the total energy consumed by the vehicle. The mathematical study of such questions is known as the Calculus of Variations. Mathematicians seek to improve our big-picture understanding of questions like "what does the optimal configuration look like?" or "if I deviate slightly from the optimal configuration, how much more energy do I use?" The principal researcher's work is focused on such problems that arise geometrically. For example, just like the optimal driving route might minimize the length between the starting and ending points, a soap film spanning a wire loop can be modeled by saying that it tends to form the configuration that minimizes the surface area among all possible shapes spanning the loop. Closely related ideas include functionals from materials science that model contact between distinct phases of matter. Even though these are natural and well-studied settings, many basic questions about the shape and nature of optimal configurations remain unsolved. These projects will focus on the notion of "stability" which is related to the question of how a configuration compares to nearby-less optimal-configurations, and specifically will study the ramifications of stability for such questions about optimal configurations. One key component of these activities will involve training the next generation of researchers to tackle such problems. This will be accomplished by mentoring and teaching as well as creating publicly accessible educational materials describing cutting edge research topics.This research program will focus on stable minimal hypersurfaces and related problems. Jointly with Chao Li, the principal investigator has recently solved the stable Bernstein problem in four-dimensions: a complete stable minimal hypersurface in four-dimensional Euclidean space is flat. A series of questions will be studied that are connected to stable minimal hypersurfaces as well as related problems such as scalar curvature, with the eventual goal of understanding stable Bernstein problem in higher dimensions. Similar problems will be investigated for related areas such as the Allen-Cahn equation. These projects will also consider the relationship of stability and scalar curvature comparison geometry, as well as investigate weaker forms of stability (finite Morse index) as it relates to the min-max constructions of minimal (and other) surfaces. For example, these projects will investigate the area-spectrum (p-widths) of other surfaces, following work with Christos Mantoulidis computing the p-widths of the two-sphere. The PI will continue to mentor graduate students and postdocs, as well as continue to give classes and minicourses related to these areas of research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在科学,工程和数学中自然产生的许多现象可以通过试图最大程度减少一些能量的配置来描述。例如,选择最佳驾驶路线可能涉及最大程度地减少行驶的总距离或车辆消耗的总能量。此类问题的数学研究称为变异的计算。数学家试图提高我们对“最佳配置是什么样的?”等问题的深刻理解。或“如果我略微偏离最佳配置,我还要使用多少能量?”首席研究人员的工作集中在几何形式出现的问题上。例如,就像最佳驾驶路线可以最大程度地减少起点和终点之间的长度一样,可以通过说出它倾向于形成构造的肥皂膜来建模,从而使所有可能的形状之间的表面积最小化。密切相关的想法包括来自材料科学的功能,这些功能模拟了物质不同阶段之间的接触。即使这些是自然而经过充分研究的设置,但有关最佳配置的形状和性质的许多基本问题仍未解决。 这些项目将重点介绍“稳定性”的概念,该概念与配置相比与附近的最佳最佳配置相比的问题有关,特别会研究有关此类最佳配置问题的稳定性后果。这些活动的一个关键组成部分将涉及培训下一代研究人员解决此类问题。这将通过指导和教学以及创建描述尖端研究主题的公共可访问的教育材料来实现。本研究计划将重点关注稳定的最小超级表面和相关问题。主要研究者与Chao Li共同解决了四维中稳定的伯恩斯坦问题:四维欧几里得空间中完全稳定的最小超出表面是平坦的。将研究一系列问题,这些问题与稳定的最小超曲面以及相关问题(例如标量曲率)有关,并最终是了解较高维度中稳定的伯恩斯坦问题的目标。相关领域(例如Allen-Cahn方程)将研究类似的问题。这些项目还将考虑稳定性与标态曲率比较几何形状的关系,并研究稳定性的较弱形式(有限的摩尔斯指数),因为它与最小(和其他)表面的最低最大构建体有关。例如,这些项目将研究其他表面的区域光谱(p宽度),在与Christos Mantoulidis合作计算了两杆的p宽度。 PI将继续指导研究生和博士后,并继续提供与这些研究领域相关的课程和微型评论。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛的影响来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Otis Chodosh其他文献
Optimal Transport and Ricci Curvature: Wasserstein Space Over the Interval
- DOI:
- 发表时间:
2011-05 - 期刊:
- 影响因子:0
- 作者:
Otis Chodosh - 通讯作者:
Otis Chodosh
Stationary axisymmetric black holes with matter
具有物质的静止轴对称黑洞
- DOI:
10.4310/cag.2021.v29.n1.a2 - 发表时间:
2015 - 期刊:
- 影响因子:0.7
- 作者:
Otis Chodosh;Yakov Shlapentokh - 通讯作者:
Yakov Shlapentokh
Expanding Ricci solitons asymptotic to cones
- DOI:
10.1007/s00526-013-0664-y - 发表时间:
2013-03 - 期刊:
- 影响因子:2.1
- 作者:
Otis Chodosh - 通讯作者:
Otis Chodosh
Volume growth of 3-manifolds with scalar curvature lower bounds
具有标量曲率下界的 3 流形的体积增长
- DOI:
10.1007/s00039-022-00598-4 - 发表时间:
2022 - 期刊:
- 影响因子:2.2
- 作者:
Otis Chodosh;C. Li;Douglas Stryker - 通讯作者:
Douglas Stryker
STABLE MINIMAL SURFACES AND POSITIVE SCALAR CURVATURE LECTURE NOTES FOR MATH 258, STANFORD, FALL 2021
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Otis Chodosh - 通讯作者:
Otis Chodosh
Otis Chodosh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Otis Chodosh', 18)}}的其他基金
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
- 批准号:
2016403 - 财政年份:2019
- 资助金额:
$ 54.63万 - 项目类别:
Continuing Grant
Large Scale Geometry of Scalar Curvature and Minimal Surfaces
标量曲率和最小曲面的大尺度几何
- 批准号:
1811059 - 财政年份:2018
- 资助金额:
$ 54.63万 - 项目类别:
Continuing Grant
相似国自然基金
自旋几何中含有临界指数的非线性Dirac方程的变分学研究
- 批准号:12371117
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
体积泛函和Willmore泛函的几何变分问题
- 批准号:12271069
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
基于几何变分的MR医学图像选择性分割理论与算法研究
- 批准号:12271262
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
几何变分问题解的奇点集的研究
- 批准号:12271195
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
变分方法与辛几何理论在N体问题中的应用
- 批准号:12101394
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 54.63万 - 项目类别:
Continuing Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
- 批准号:
1265910 - 财政年份:2013
- 资助金额:
$ 54.63万 - 项目类别:
Continuing Grant
Research on stability and global properties of solutions of geometric variational problems
几何变分问题解的稳定性和全局性质研究
- 批准号:
19540217 - 财政年份:2007
- 资助金额:
$ 54.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulary and stability of curvature flows and their applications to geometric variational problems
曲率流的规律性和稳定性及其在几何变分问题中的应用
- 批准号:
62175069 - 财政年份:2007
- 资助金额:
$ 54.63万 - 项目类别:
Independent Junior Research Groups
Reserch on the stability of solutions of geometric evolution equation using group equivariance
利用群等方差研究几何演化方程解的稳定性
- 批准号:
17540188 - 财政年份:2005
- 资助金额:
$ 54.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)