Refined Approximation of Tail Probabilities, Expectation and Exponential Bounds for Partial Sums and Self-Normalized Martingales
部分和和自归一化鞅的尾部概率、期望和指数界的精细逼近
基本信息
- 批准号:9972417
- 负责人:
- 金额:$ 12.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator plans to do work in two principal areas, sums and self-normalized sums. He (together with a co-author) intends to write up a very accurate result which can be applied to the approximation of tail probabilities of both real-valued and Banach space-valued partial sums of independent variates. Armed with certain functions defined from the marginal distributions of the variates, approximations of partial sum quantiles and p-th moments of great precision should follow. Secondly, the proposer (and co-authors) will address questions concerning exponential moment and tail probability upper bounds for self-normalized martingales. It is anticipated that statistical applications will occur as a consequence. Probabilistic and statistical issues arise in a broad variety of theoretical and applied contexts. Most commonly the issues involve the probability of an event, the expectation of a random function, or a test of hypothesis. Real world applications of such results are wide-spread, extending from theory to data analysis in the social sciences, pharmaceuticals, finance, economics, engineering, the physical sciences, and the performance of algorithms. The investigator has worked in the area of sums of independent random variables for many years. He (together with co-authors) now is pursuing results of very refined precision. Included in this list are substantial improvements in the approximation of tail probabilities of partial sums and the location of their quantiles, expectation bounds, plus tail probability, exponential and moment generating function bounds for so-called self-normalized martingales.
研究人员计划在两个主要领域开展工作,总和和自归一化总和。他(连同合著者)打算写了一个非常准确的结果,可以适用于逼近尾部概率的实值和Banach空间值部分和独立变量。根据变量的边际分布定义某些函数,就可以得到精度很高的部分和分位数和p阶矩的近似值。其次,提议者(和合著者)将解决有关自归一化鞅的指数矩和尾概率上界的问题。预计统计应用将因此而出现。概率和统计问题出现在各种各样的理论和应用背景。最常见的问题涉及事件的概率,随机函数的期望值或假设检验。这些结果在真实的世界中的应用非常广泛,从理论到社会科学、制药、金融、经济、工程、物理科学和算法性能的数据分析。该研究员在独立随机变量和领域工作多年。他(与合著者)现在正在追求非常精确的结果。包括在这个列表中的部分和的尾部概率的近似和他们的分位数的位置,期望界,加上尾部概率,指数和矩生成函数的所谓的自归一化鞅界的实质性改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Klass其他文献
Michael Klass的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Klass', 18)}}的其他基金
Refined Approximation of Tail Probabilities, Constrained Expectations, Data Analysis in Multidimensional and Metric Spaces, Plus Optimal Stable Growth in Finance
尾部概率的精细逼近、约束期望、多维和度量空间的数据分析以及金融领域的最优稳定增长
- 批准号:
0205054 - 财政年份:2002
- 资助金额:
$ 12.96万 - 项目类别:
Continuing Grant
Further Study of Random Sums, Bilinear Forms, Multilinear Forms, Stopping Times, Expectations, Tail Probabilities & Limit Theorems
随机和、双线性形式、多线性形式、停止时间、期望、尾部概率的进一步研究
- 批准号:
9626236 - 财政年份:1996
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Mathematical Sciences: The Probabilistic Behavior of Sums and Quadratic Forms
数学科学:和与二次形式的概率行为
- 批准号:
9310263 - 财政年份:1993
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximation of Probabilities and Expectations for Sums, Multilinear Forms and Ladder Variables
数学科学:求和、多线性形式和阶梯变量的概率和期望的近似
- 批准号:
9007469 - 财政年份:1990
- 资助金额:
$ 12.96万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Probability Theory and Related Topics
数学科学:概率论问题及相关主题
- 批准号:
8906522 - 财政年份:1989
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems from Probability, Economics and Finance, Operations Research, and Biology
数学科学:概率、经济学和金融学、运筹学和生物学的问题
- 批准号:
8601902 - 财政年份:1986
- 资助金额:
$ 12.96万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sums of Independent Random Elements
数学科学:独立随机元素的和
- 批准号:
8301793 - 财政年份:1983
- 资助金额:
$ 12.96万 - 项目类别:
Continuing Grant
Cell-Specific Gene Expression During Spermatogenesis in C. Elegans
线虫精子发生过程中的细胞特异性基因表达
- 批准号:
8216161 - 财政年份:1983
- 资助金额:
$ 12.96万 - 项目类别:
Continuing Grant
相似海外基金
High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
- 批准号:
DP240100769 - 财政年份:2024
- 资助金额:
$ 12.96万 - 项目类别:
Discovery Projects
Approximation theory of structured neural networks
结构化神经网络的逼近理论
- 批准号:
DP240101919 - 财政年份:2024
- 资助金额:
$ 12.96万 - 项目类别:
Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
- 批准号:
2400040 - 财政年份:2024
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
- 批准号:
2247123 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Standard Grant
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
- 批准号:
DP230102079 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Discovery Projects
A Lebesgue Integral based Approximation for Language Modelling
基于勒贝格积分的语言建模近似
- 批准号:
EP/X019063/1 - 财政年份:2023
- 资助金额:
$ 12.96万 - 项目类别:
Research Grant