Refined Approximation of Tail Probabilities, Constrained Expectations, Data Analysis in Multidimensional and Metric Spaces, Plus Optimal Stable Growth in Finance
尾部概率的精细逼近、约束期望、多维和度量空间的数据分析以及金融领域的最优稳定增长
基本信息
- 批准号:0205054
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-08-15 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0205054Klass In work with various co-authors, the PI plans to work on the following five tasks. 1) Complete a paper on (nearly optimal) approximation of quantile location for sums of independent and otherwise arbitrary random variables. 2) Complete a paper in finance which introduces a new constraint to augment the optimal growth criterion and thereby provide local wealth stability. A natural sub-optimal strategy can be exhibited. It is further shown how one can create a long-term portfolio strategy which asymptotically withdraws money at the (same) asymptotic rate at which the portfolio is growing, without diminishing that long-term rate(!). 3) Extend previous work on self-normalized martingales. 4) Attempt to construct and/or identify extremal distributions which arise in various situations maximizing the expected value of some random quantity subject to infinitely many linear inequality constraints. 5) Develop an idea, conveyed to him in 1992 by Prof. David L. Allen, to show how to construct a natural posterior distribution on densities in R, given only the data acquired, and extending the result to R^d by means of the Radon Transform. This approach permits one to establish confidence intervals for parameter estimation, to perform hypothesis testing and data classification with only finite samples. Goodness of fit tests are also contemplated. The principle investigator plans work in five areas: quantile approximation for sums of arbitrary independent random variables, optimal investment strategy designed to guard against local capital losses of more than a pre-set proportion of the previous maximal accumulated wealth (plus a method of permitting consumption at the long run growth rate without sacrificing that long-run rate), extend previous work on self-normalized martingales, solve or find approximately optimal solutions to certain infinite dimensional linear programming problems, demonstrate how to make full use of the data acquired in statistical settings which involve hypothesis testing or classification (categorization) of data. The investment work should be of fundamental interest and importance to individual, corporate and community (governmental) investment. The data analysis efforts may suggest a best possible approach to determining whether a particular datum came from A or B given limited prior data on A and B. Such work could be useful in character recognition, hand-writing decipherment, etc. The other topics were motivated by prior work of the PI.
0205054 Klass在与各种合著者的合作中,PI计划开展以下五项任务。1)完成一篇关于独立和任意随机变量之和的分位数位置的(近最优)近似的论文。2)完成一篇金融学论文,其中引入了一个新的约束来增强最优增长标准,从而提供了局部财富稳定性。可以展示自然的次优策略。它进一步表明,如何可以创建一个长期的投资组合策略,渐近撤回资金在(相同)的渐近速度,投资组合的增长,而不会减少长期利率(!)。3)推广了以前关于自正规鞅的工作。4)尝试构造和/或识别极值分布,这些分布出现在各种情况下,最大化受无穷多个线性不等式约束的某个随机量的期望值。5)发展一个想法,由大卫教授在1992年告诉他。艾伦,以显示如何构建一个自然的后验分布的密度在R中,只给定所获得的数据,并扩展结果的R^d通过拉东变换。这种方法允许建立参数估计的置信区间,进行假设检验和数据分类,只有有限的样本。还考虑拟合优度测试。 首席调查员计划在五个领域开展工作:任意独立随机变量之和的分位数近似,最优投资策略旨在防止局部资本损失超过先前最大累积财富的预设比例(加上一种允许消费在长期增长率而不牺牲长期增长率的方法),扩展了以前关于自归一化鞅的工作,解决或找到近似最佳的解决方案,以某些无限维线性规划问题,演示如何充分利用在统计设置,其中涉及假设检验或数据分类(归类)所获得的数据。投资工作应该是个人、公司和社区(政府)投资的根本利益和重要性。数据分析工作可能会提出一种最佳可能方法,以确定特定数据是否来自A或B,因为A和B的先验数据有限。这项工作可能是有用的字符识别,手写破译等其他主题的动机由PI以前的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Klass其他文献
Michael Klass的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Klass', 18)}}的其他基金
Refined Approximation of Tail Probabilities, Expectation and Exponential Bounds for Partial Sums and Self-Normalized Martingales
部分和和自归一化鞅的尾部概率、期望和指数界的精细逼近
- 批准号:
9972417 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Further Study of Random Sums, Bilinear Forms, Multilinear Forms, Stopping Times, Expectations, Tail Probabilities & Limit Theorems
随机和、双线性形式、多线性形式、停止时间、期望、尾部概率的进一步研究
- 批准号:
9626236 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: The Probabilistic Behavior of Sums and Quadratic Forms
数学科学:和与二次形式的概率行为
- 批准号:
9310263 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Approximation of Probabilities and Expectations for Sums, Multilinear Forms and Ladder Variables
数学科学:求和、多线性形式和阶梯变量的概率和期望的近似
- 批准号:
9007469 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Probability Theory and Related Topics
数学科学:概率论问题及相关主题
- 批准号:
8906522 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Problems from Probability, Economics and Finance, Operations Research, and Biology
数学科学:概率、经济学和金融学、运筹学和生物学的问题
- 批准号:
8601902 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Sums of Independent Random Elements
数学科学:独立随机元素的和
- 批准号:
8301793 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Continuing Grant
Cell-Specific Gene Expression During Spermatogenesis in C. Elegans
线虫精子发生过程中的细胞特异性基因表达
- 批准号:
8216161 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
- 批准号:
DP240100769 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Approximation theory of structured neural networks
结构化神经网络的逼近理论
- 批准号:
DP240101919 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
- 批准号:
2400040 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
- 批准号:
2308856 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223985 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223986 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
- 批准号:
2247123 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
- 批准号:
DP230102079 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
A Lebesgue Integral based Approximation for Language Modelling
基于勒贝格积分的语言建模近似
- 批准号:
EP/X019063/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant