Multi-Constraint, Multi-Objective Graph Partitioning

多约束、多目标图划分

基本信息

  • 批准号:
    9972519
  • 负责人:
  • 金额:
    $ 28.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2003-08-31
  • 项目状态:
    已结题

项目摘要

Algorithms that find a good partitioning of highly unstructured and irregular graphs are critical for developing efficient solutions of a wide range of problems including parallel execution of scientific simulations. The traditional graph partitioning problem focuses on computing a k-way partition of a graph such that the edge-cut is minimized and each partition has an equal number of vertices (or in the case of weighted graphs, the sum of the vertex-weights in each partition are the same). The task of minimizing the edge-cut can be considered as the objective and the requirement that the partitions will be of the same size can be considered as the constraint. Unfortunately, this single-constraint single-objective graph partitioning problem is not sufficient to model the underlying requirements of many current and emerging applications, especially in the area of high performance scientific simulations. In particular, the effective parallel solution of multi-physics and multi-phase computations in areas such as automobile engine design, crash-worthiness testing, fluid dynamics, structural mechanics, etc., requires that the partitioning algorithm simultaneously balances the computations performed during each one of the phases and minimizes the various communication overheads--none of which can be accomplished by the current graph models and partitioning algorithms. The key characteristic of these applications is that they require the partitioning algorithm to handle an arbitrary number of balancing constraints as well as an arbitrary number of optimization (either minimization or maximization) objectives. This project will develop new generalized models for graph partitioning that are able to model the requirements of many existing and emerging problems in high-performance scientific simulations that cannot be modeled within the current framework, as well as algorithms for solving these problems. The graph models and partitioning algorithms will be tested and validated on a wide range of problems obtained from industrial and government sources.
找到高度非结构化和不规则图形的良好分区的算法对于开发包括科学模拟的并行执行在内的各种问题的有效解决方案至关重要。传统的图划分问题集中于计算图的k路划分,使得边切割最小化并且每个分区具有相等数量的顶点(或者在加权图的情况下,每个分区中的顶点权重之和相同)。最小化边缘切割的任务可以被认为是目标,并且分区将具有相同大小的要求可以被认为是约束。不幸的是,这种单约束单目标图划分问题不足以模拟许多当前和新兴应用的底层需求,特别是在高性能科学模拟领域。特别是,在汽车发动机设计、耐撞性测试、流体动力学、结构力学等领域的多物理场和多阶段计算的有效并行解决方案,要求划分算法同时平衡每个阶段期间执行的计算,并最大限度地减少各种通信开销--当前的图模型和划分算法无法实现这些目标。这些应用程序的关键特征是,它们需要分区算法来处理任意数量的平衡约束以及任意数量的优化(最小化或最大化)目标。该项目将开发新的通用模型,用于图分区,能够模拟高性能科学模拟中许多现有和新出现的问题的要求,这些问题无法在当前框架内建模,以及解决这些问题的算法。图模型和分区算法将在从工业和政府来源获得的广泛问题上进行测试和验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Karypis其他文献

A knowledge graph of clinical trials ( $$\mathop {\mathtt {CTKG}}\limits$$ )
  • DOI:
    10.1038/s41598-022-08454-z
  • 发表时间:
    2022-03-18
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Ziqi Chen;Bo Peng;Vassilis N. Ioannidis;Mufei Li;George Karypis;Xia Ning
  • 通讯作者:
    Xia Ning
Predicting the Performance of Randomized Parallel Search: An Application to Robot Motion Planning
  • DOI:
    10.1023/a:1026283627113
  • 发表时间:
    2003-09-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Daniel J. Challou;Maria Gini;Vipin Kumar;George Karypis
  • 通讯作者:
    George Karypis
Out-of-core coherent closed quasi-clique mining from large dense graph databases
从大型密集图数据库中进行核外相干封闭准集团挖掘
Grade prediction with models specific to students and courses
Efficient identification of Tanimoto nearest neighbors

George Karypis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Karypis', 18)}}的其他基金

REU Site: Computational Methods for Discovery Driven by Big Data
REU 网站:大数据驱动的发现计算方法
  • 批准号:
    1757916
  • 财政年份:
    2018
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
III: Medium: High-Performance Factorization Tools for Constrained and Hidden Tensor Models
III:中:用于约束和隐藏张量模型的高性能分解工具
  • 批准号:
    1704074
  • 财政年份:
    2017
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Continuing Grant
BIGDATA: IA: DKA: Collaborative Research: Learning Data Analytics: Providing Actionable Insights to Increase College Student Success
大数据:IA:DKA:协作研究:学习数据分析:提供可行的见解以提高大学生的成功
  • 批准号:
    1447788
  • 财政年份:
    2014
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Automated Out-of-Core Execution of Parallel Message-Passing Applications
PFI:AIR - TT:并行消息传递应用程序的自动核外执行
  • 批准号:
    1414153
  • 财政年份:
    2014
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
SI2-SSE: Software Infrastructure For Partitioning Sparse Graphs on Existing and Emerging Computer Architectures
SI2-SSE:用于在现有和新兴计算机架构上分区稀疏图的软件基础设施
  • 批准号:
    1048018
  • 财政年份:
    2010
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Computational Methods to Advance Chemical Genetics by Bridging Chemical and Biological Spaces
III:媒介:合作研究:通过桥接化学和生物空间推进化学遗传学的计算方法
  • 批准号:
    0905220
  • 财政年份:
    2009
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Continuing Grant
SEI: Virtual Screening Algorithms for Bioactive Compounds Based on Frequent Substructures
SEI:基于频繁子结构的生物活性化合物虚拟筛选算法
  • 批准号:
    0431135
  • 财政年份:
    2004
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
ITR/NGS: Graph Partitioning Algorithms for Complex Problems & Architectures
ITR/NGS:复杂问题的图划分算法
  • 批准号:
    0312828
  • 财政年份:
    2003
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
CAREER: Scalable Algorithms for Knowledge Discovery in Scientific Data Sets
职业:科学数据集中知识发现的可扩展算法
  • 批准号:
    0133464
  • 财政年份:
    2002
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Continuing Grant
CISE Research Instrumentation: Cluster Computing for Knowledge Discovery in Diverse Data Sets
CISE Research Instrumentation:用于不同数据集中知识发现的集群计算
  • 批准号:
    9986042
  • 财政年份:
    2000
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
  • 批准号:
    2348475
  • 财政年份:
    2024
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
  • 批准号:
    EP/X033201/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Fellowship
AF:Small: Bayesian Estimation and Constraint Satisfaction
AF:Small:贝叶斯估计和约束满足
  • 批准号:
    2342192
  • 财政年份:
    2024
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
Speeding-up SAT-based Constraint Optimization Solvers
加速基于 SAT 的约束优化求解器
  • 批准号:
    23K11047
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
  • 批准号:
    2307801
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
CAREER: NeuralSAT: A Constraint-Solving Framework for Verifying Deep Neural Networks
职业:NeuralSAT:用于验证深度神经网络的约束求解框架
  • 批准号:
    2238133
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Continuing Grant
CAREER: Toward Real-Time, Constraint-Aware Control of Complex Dynamical Systems: from Theory and Algorithms to Software Tools
职业:实现复杂动力系统的实时、约束感知控制:从理论和算法到软件工具
  • 批准号:
    2238424
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Standard Grant
Illuminating the distribution of extreme evolutionary constraint in the human genome from fetal demise to severe developmental disorders
阐明人类基因组中从胎儿死亡到严重发育障碍的极端进化限制的分布
  • 批准号:
    10601318
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
Evaluating the relative contribution of historical constraint in the evolution of migratory routes of Japanese birds
评估历史约束对日本鸟类迁徙路线演变的相对贡献
  • 批准号:
    23K14272
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Characterization and clinical trial of a Variable Friction Shoe, a new paradigm of reduced-constraint locomotor therapy for people exhibiting foot drop due to stroke
可变摩擦鞋的表征和临床试验,这是一种针对因中风而出现足下垂的患者的减少约束运动疗法的新范例
  • 批准号:
    10720578
  • 财政年份:
    2023
  • 资助金额:
    $ 28.65万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了