REU Site: Computational Methods for Discovery Driven by Big Data

REU 网站:大数据驱动的发现计算方法

基本信息

  • 批准号:
    1757916
  • 负责人:
  • 金额:
    $ 36.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to continue the University of Minnesota (UMN) Research Experiences for Undergraduates (REU) Site in which students engage in research that develops computational methods for scientific discovery across disciplines that are driven by big data. Closely mentored by Computer Science and Engineering (CS&E) faculty, each student will contribute to active research that addresses open questions in computational complexity, machine learning, parallel and distributed computing, mobile and cloud computing, or graphics and visualization. A UMN REU participant might use observation data to simulate crowd behavior, analyze genome sequence data to better understand microbial communities, develop tools to analyze chemical-genetic interaction networks, improve spatial perception in a virtual environment, develop visualization techniques to better understand massive data sets, enhance parallel distributed processing through algorithm development or by harnessing the computational power of a network of mobile devices, or use graph-based approaches to better understand climate change. The diverse research of CS&E faculty represents collaboration across the University with faculty in genetics, chemistry, climate science, neuroscience, architecture, medicine, and biomedical engineering to propel all of these disciplines and computer science towards previously unattainable insights and discoveries. In this 10-week summer program, in addition to immersion in research, students will receive technical training and professional development that encourages and prepares them for a sustained career in the sciences. This includes Big Data Colloquia, Communicating Science workshops, career mentoring, and public dissemination of research findings. Towards an objective of increased participation and broader impacts, this program will bring together nationally recruited students and those from UMN and local institutions to establish a cohort with diverse academic and cultural backgrounds. http://reubigdata.cs.umn.edu/The objectives of the University of Minnesota (UMN) REU Site program are to (i) intellectually engage and excite participants to motivate their commitment to and pursuit of a career in the sciences, specifically to foster academic persistence, (ii) increase participation in and contribution to the sciences by women and underrepresented minorities in computer science, (iii) train students for sustained contribution to the sciences, particularly in computational methods for big data transdisciplinary research, and (iv) professionally prepare and mentor participants for a career in the sciences, i.e., to teach participants to be effective communicators, be career savvy, and versed in the ethics of science. Towards these objectives, in a 10-week summer program students are immersed daily in research addressing open questions in computational methods for big data. Throughout the summer, each student is closely mentored by a faculty member and graduate student. Program activities help students quickly acclimatize to research and independent work, and most importantly, motivate and prepare students for academic persistence and a career in the sciences. Activities include research tutorials, a Big Data Colloquium series, a Communicating Science workshop series, career mentoring, and a poster presentation at a campus-wide research symposium. The program combines a non-resident and resident program to create a cohort of up to 25 students: 2 from local institutions, 8 from a national recruiting effort funded by this grant, and 15 students through other funding mechanisms. This combined program increases diversity, improves program and impact sustainability, and capitalizes on economic efficiencies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是继续明尼苏达大学 (UMN) 本科生研究体验 (REU) 网站,学生可以在该网站中从事研究,开发由大数据驱动的跨学科科学发现的计算方法。在计算机科学与工程 (CS&E) 教师的密切指导下,每个学生都将积极参与研究,解决计算复杂性、机器学习、并行和分布式计算、移动和云计算或图形和可视化方面的开放性问题。 UMN REU 参与者可以使用观测数据来模拟人群行为,分析基因组序列数据以更好地了解微生物群落,开发工具来分析化学遗传相互作用网络,改善虚拟环境中的空间感知,开发可视化技术以更好地理解海量数据集,通过算法开发或利用移动设备网络的计算能力来增强并行分布式处理,或者使用基于图形的方法来更好地理解 气候变化。 CS&E 教师的多元化研究代表了整个大学与遗传​​学、化学、气候科学、神经科学、建筑、医学和生物医学工程教师的合作,推动所有这些学科和计算机科学取得以前无法实现的见解和发现。在这个为期 10 周的暑期项目中,除了沉浸式研究之外,学生还将接受技术培训和专业发展,以鼓励他们为科学事业的持续发展做好准备。这包括大数据座谈会、传播科学研讨会、职业指导和研究成果的公开传播。为了提高参与度和扩大影响力,该项目将汇集全国招收的学生以及来自 UMN 和当地机构的学生,建立一个具有不同学术和文化背景的群体。 http://reubigdata.cs.umn.edu/ 明尼苏达大学 (UMN) REU 站点计划的目标是 (i) 在智力上吸引和激励参与者,以激励他们对科学事业的承诺和追求,特别是培养学术毅力,(ii) 增加计算机科学领域女性和代表性不足的少数群体对科学的参与和贡献,(iii) 培训学生 奖励对科学的持续贡献,特别是在大数据跨学科研究的计算方法方面,以及(iv)为参与者在科学领域的职业生涯提供专业准备和指导,即教导参与者成为有效的沟通者、职业头脑和精通科学伦理。为了实现这些目标,在为期 10 周的暑期课程中,学生们每天都沉浸在解决大数据计算方法中的开放性问题的研究中。整个夏天,每个学生都会受到教职员工和研究生的密切指导。项目活动帮助学生快速适应研究和独立工作,最重要的是,激励学生并为他们的学术坚持和科学事业做好准备。活动包括研究教程、大数据研讨会系列、传播科学研讨会系列、职业指导以及在全校研究研讨会上的海报展示。该项目结合了非居民和居民项目,创建了一个最多 25 名学生的群体:2 名来自当地机构,8 名来自由这笔赠款资助的全国招生工作,以及 15 名通过其他资助机制资助的学生。这一联合计划增加了多样性,改善了计划和影响的可持续性,并充分利用了经济效率。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Virtual Reality Investigation of the Impact of Wallpaper Pattern Scale on Qualitative Spaciousness Judgments and Action-Based Measures of Room Size Perception
虚拟现实研究壁纸图案比例对定性宽敞判断和基于行动的房间尺寸感知测量的影响
Facilitating CPAP Adherence with Personalized Recommendations Using Artificial Neural Networks
使用人工神经网络通过个性化建议促进 CPAP 坚持
Multi-Touch Querying on Data Physicalizations in Immersive AR
  • DOI:
    10.1145/3488542
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bridger Herman;Maxwell Omdal;Stephanie Zeller;Clara A. Richter;F. Samsel;G. Abram;Daniel F. Keefe
  • 通讯作者:
    Bridger Herman;Maxwell Omdal;Stephanie Zeller;Clara A. Richter;F. Samsel;G. Abram;Daniel F. Keefe
Design and Experiments with LoCO AUV: A Low Cost Open-Source Autonomous Underwater Vehicle
LoCO AUV 的设计和实验:低成本开源自主水下航行器
  • DOI:
    10.1109/iros45743.2020.9341007
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Edge, Chelsey;Sakib Enan, Sadman;Fulton, Michael;Hong, Jungseok;Mo, Jiawei;Barthelemy, Kimberly;Bashaw, Hunter;Kallevig, Berik;Knutson, Corey;Orpen, Kevin
  • 通讯作者:
    Orpen, Kevin
SCARLET: Explainable Attention based Graph Neural Network for Fake News spreader prediction
  • DOI:
    10.1007/978-3-030-75762-5_56
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Bhavtosh Rath;X. Morales;J. Srivastava
  • 通讯作者:
    Bhavtosh Rath;X. Morales;J. Srivastava
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Karypis其他文献

A knowledge graph of clinical trials ( $$\mathop {\mathtt {CTKG}}\limits$$ )
  • DOI:
    10.1038/s41598-022-08454-z
  • 发表时间:
    2022-03-18
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Ziqi Chen;Bo Peng;Vassilis N. Ioannidis;Mufei Li;George Karypis;Xia Ning
  • 通讯作者:
    Xia Ning
Predicting the Performance of Randomized Parallel Search: An Application to Robot Motion Planning
  • DOI:
    10.1023/a:1026283627113
  • 发表时间:
    2003-09-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Daniel J. Challou;Maria Gini;Vipin Kumar;George Karypis
  • 通讯作者:
    George Karypis
Out-of-core coherent closed quasi-clique mining from large dense graph databases
从大型密集图数据库中进行核外相干封闭准集团挖掘
Grade prediction with models specific to students and courses
Data clustering in life sciences
  • DOI:
    10.1385/mb:31:1:055
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Ying Zhao;George Karypis
  • 通讯作者:
    George Karypis

George Karypis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Karypis', 18)}}的其他基金

III: Medium: High-Performance Factorization Tools for Constrained and Hidden Tensor Models
III:中:用于约束和隐藏张量模型的高性能分解工具
  • 批准号:
    1704074
  • 财政年份:
    2017
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
BIGDATA: IA: DKA: Collaborative Research: Learning Data Analytics: Providing Actionable Insights to Increase College Student Success
大数据:IA:DKA:协作研究:学习数据分析:提供可行的见解以提高大学生的成功
  • 批准号:
    1447788
  • 财政年份:
    2014
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Automated Out-of-Core Execution of Parallel Message-Passing Applications
PFI:AIR - TT:并行消息传递应用程序的自动核外执行
  • 批准号:
    1414153
  • 财政年份:
    2014
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
SI2-SSE: Software Infrastructure For Partitioning Sparse Graphs on Existing and Emerging Computer Architectures
SI2-SSE:用于在现有和新兴计算机架构上分区稀疏图的软件基础设施
  • 批准号:
    1048018
  • 财政年份:
    2010
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Computational Methods to Advance Chemical Genetics by Bridging Chemical and Biological Spaces
III:媒介:合作研究:通过桥接化学和生物空间推进化学遗传学的计算方法
  • 批准号:
    0905220
  • 财政年份:
    2009
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
SEI: Virtual Screening Algorithms for Bioactive Compounds Based on Frequent Substructures
SEI:基于频繁子结构的生物活性化合物虚拟筛选算法
  • 批准号:
    0431135
  • 财政年份:
    2004
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
ITR/NGS: Graph Partitioning Algorithms for Complex Problems & Architectures
ITR/NGS:复杂问题的图划分算法
  • 批准号:
    0312828
  • 财政年份:
    2003
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
CAREER: Scalable Algorithms for Knowledge Discovery in Scientific Data Sets
职业:科学数据集中知识发现的可扩展算法
  • 批准号:
    0133464
  • 财政年份:
    2002
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
CISE Research Instrumentation: Cluster Computing for Knowledge Discovery in Diverse Data Sets
CISE Research Instrumentation:用于不同数据集中知识发现的集群计算
  • 批准号:
    9986042
  • 财政年份:
    2000
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
Multi-Constraint, Multi-Objective Graph Partitioning
多约束、多目标图划分
  • 批准号:
    9972519
  • 财政年份:
    1999
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant

相似国自然基金

新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
  • 批准号:
    52172255
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
  • 批准号:
    41340011
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
REU Site: ACRES: Advanced Computational Research Experience for Students
REU 网站:ACRES:学生的高级计算研究体验
  • 批准号:
    2349002
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
  • 批准号:
    2348547
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
REU Site: Computational Mathematics for Data Science
REU 网站:数据科学的计算数学
  • 批准号:
    2349534
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
  • 批准号:
    2348984
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
REU Site: Computational Insights into Infectious Disease Evolution, Ecology and Epidemiology
REU 网站:传染病进化、生态学和流行病学的计算见解
  • 批准号:
    2349102
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Continuing Grant
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
REU Site: Genomics and Computational biology
REU 网站:基因组学和计算生物学
  • 批准号:
    2243206
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
REU Site: Computational Modeling Serving Portland
REU 站点:为波特兰服务的计算模型
  • 批准号:
    2244551
  • 财政年份:
    2023
  • 资助金额:
    $ 36.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了