SEI: Virtual Screening Algorithms for Bioactive Compounds Based on Frequent Substructures

SEI:基于频繁子结构的生物活性化合物虚拟筛选算法

基本信息

  • 批准号:
    0431135
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

AWARD ABSTRACT This award provides funding for the development of effective and efficient algorithms to analyze large chemical compound databases and identify the compounds that are the most probable for displaying the desired drug-like behavior. These virtual screening algorithms are based on a substructure-based classification framework that utilizes (i) highly efficient frequent subgraph discovery algorithms that mine the chemical compounds to discover all the substructures (topological or geometric) that are critical for the classification task, (ii) sophisticated feature selection and generation algorithms that combine multiple criteria to identify and synthesize a set of substructure-based features that simultaneously simplify the representation of the original compounds while retaining and exposing their key features, and (iii) kernel-based approaches that take into account the relationships between these substructures at different levels of granularity and complexity. The research is integrated with an educational plan that focuses on initiating undergraduate and graduate students to the various computational and data analysis aspects of virtual screening, machine learning, and data mining through courses, summer institutes, and research opportunities.The successful completion of this project will lead to advances in the drug development process by developing computationally efficient and accurate classification algorithms that can be used to replace or supplement biological-assay-based high-throughput screening (HTS) techniques and by producing a general purpose chemical compound classification software toolkit that will contain high-quality implementations of the various algorithms that will be developed and made available to the public. The combination of existing HTS-based approaches with these virtual screening methods will allow a move away from purely random-based testing, toward more meaningful and directed iterative rapid-feedback searches of subsets and focused libraries.
奖项摘要该奖项为开发有效和高效的算法提供资金,以分析大型化合物数据库并识别最有可能显示所需药物样行为的化合物。这些虚拟筛选算法基于基于子结构的分类框架,其利用(i)高效的频繁子图发现算法,其挖掘化合物以发现所有子结构(拓扑的或几何的)对于分类任务是关键的,(ii)复杂的特征选择和生成算法,其结合联合收割机多个标准以识别和合成一组子结构-的功能,同时简化表示的原始化合物,同时保留和暴露其关键功能,以及(iii)基于内核的方法,考虑到这些子结构之间的关系,在不同的粒度和复杂程度。该研究与一项教育计划相结合,该计划侧重于通过课程,暑期研究所,该项目的成功完成将通过开发计算效率高且准确的分类算法,用于替代或补充基于生物测定的高通量筛选(HTS)技术,并通过生产通用化合物分类软件工具包,其中包含将开发并向公众提供的各种算法的高质量实现。将现有的基于HTS的方法与这些虚拟筛选方法相结合,将允许从纯粹基于随机的测试转向更有意义和定向的子集和集中库的迭代快速反馈搜索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Karypis其他文献

A knowledge graph of clinical trials ( $$\mathop {\mathtt {CTKG}}\limits$$ )
  • DOI:
    10.1038/s41598-022-08454-z
  • 发表时间:
    2022-03-18
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Ziqi Chen;Bo Peng;Vassilis N. Ioannidis;Mufei Li;George Karypis;Xia Ning
  • 通讯作者:
    Xia Ning
Predicting the Performance of Randomized Parallel Search: An Application to Robot Motion Planning
  • DOI:
    10.1023/a:1026283627113
  • 发表时间:
    2003-09-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Daniel J. Challou;Maria Gini;Vipin Kumar;George Karypis
  • 通讯作者:
    George Karypis
Out-of-core coherent closed quasi-clique mining from large dense graph databases
从大型密集图数据库中进行核外相干封闭准集团挖掘
Grade prediction with models specific to students and courses
Data clustering in life sciences
  • DOI:
    10.1385/mb:31:1:055
  • 发表时间:
    2005-09-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Ying Zhao;George Karypis
  • 通讯作者:
    George Karypis

George Karypis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Karypis', 18)}}的其他基金

REU Site: Computational Methods for Discovery Driven by Big Data
REU 网站:大数据驱动的发现计算方法
  • 批准号:
    1757916
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Medium: High-Performance Factorization Tools for Constrained and Hidden Tensor Models
III:中:用于约束和隐藏张量模型的高性能分解工具
  • 批准号:
    1704074
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
BIGDATA: IA: DKA: Collaborative Research: Learning Data Analytics: Providing Actionable Insights to Increase College Student Success
大数据:IA:DKA:协作研究:学习数据分析:提供可行的见解以提高大学生的成功
  • 批准号:
    1447788
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Automated Out-of-Core Execution of Parallel Message-Passing Applications
PFI:AIR - TT:并行消息传递应用程序的自动核外执行
  • 批准号:
    1414153
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SI2-SSE: Software Infrastructure For Partitioning Sparse Graphs on Existing and Emerging Computer Architectures
SI2-SSE:用于在现有和新兴计算机架构上分区稀疏图的软件基础设施
  • 批准号:
    1048018
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Computational Methods to Advance Chemical Genetics by Bridging Chemical and Biological Spaces
III:媒介:合作研究:通过桥接化学和生物空间推进化学遗传学的计算方法
  • 批准号:
    0905220
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Graph Partitioning Algorithms for Complex Problems & Architectures
ITR/NGS:复杂问题的图划分算法
  • 批准号:
    0312828
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Scalable Algorithms for Knowledge Discovery in Scientific Data Sets
职业:科学数据集中知识发现的可扩展算法
  • 批准号:
    0133464
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CISE Research Instrumentation: Cluster Computing for Knowledge Discovery in Diverse Data Sets
CISE Research Instrumentation:用于不同数据集中知识发现的集群计算
  • 批准号:
    9986042
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-Constraint, Multi-Objective Graph Partitioning
多约束、多目标图划分
  • 批准号:
    9972519
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Randomized controlled trial of in-person and virtual Symptom screening with Targeted Early Palliative care (STEP2) in patients with advanced cancer
对晚期癌症患者进行有针对性的早期姑息治疗 (STEP2) 进行现场和虚拟症状筛查的随机对照试验
  • 批准号:
    490098
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Target-specific machine-learning scoring functions for reliable structure-based virtual screening
针对特定目标的机器学习评分功能,用于可靠的基于结构的虚拟筛选
  • 批准号:
    EP/X012026/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
DMS/NIGMS 1: Data-driven Ricci curvatures and spectral graph for machine learning and adaptive virtual screening
DMS/NIGMS 1:用于机器学习和自适应虚拟筛选的数据驱动的 Ricci 曲率和谱图
  • 批准号:
    2245903
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
  • 批准号:
    10759829
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing First-in-Class Ligands for RFWD3, Utilizing a Novel Virtual Screening Method
利用新颖的虚拟筛选方法开发 RFWD3 的一流配体
  • 批准号:
    486447
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship Programs
Virtual screening method for large-scale compound databases utilizing the commonality of partial structures
利用部分结构共性的大规模化合物数据库虚拟筛选方法
  • 批准号:
    22H03684
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Virtual SBIRT for Pediatric Primary Care: Increasing Access to Screening, Brief Intervention and Referral to Treatment for Alcohol and Other Drug Use via Telehealth
儿科初级保健虚拟 SBIRT:通过远程医疗增加酒精和其他药物使用筛查、简短干预和转诊治疗的机会
  • 批准号:
    10706560
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
virtual compound screening using gene expression
使用基因表达进行虚拟化合物筛选
  • 批准号:
    10418186
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Efficient synthon-based modular screening of Giga-to-Terra-scale virtual libraries
基于合成子的高效模块化筛选千兆级到太级虚拟文库
  • 批准号:
    10504984
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Identification of New Aurora Kinase Ligands through Virtual Screening
通过虚拟筛选鉴定新的极光激酶配体
  • 批准号:
    573344-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了