L-Packets of Representations of P-Adic Groups
P-进群表示的 L-包
基本信息
- 批准号:9972579
- 负责人:
- 金额:$ 5.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2002-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9972579Professor Reeder will attempt to describe and calculate explicitly properties and numerical invariants of representations that should be shared with the representations of a given L-packet. He expects that he can deal with invariants like the ramification, the formal degrees, Plancherel measures, leading K-types and associated infinitesimal characters This work is expected to have impact on other areas of current number theory research like the elliptic geometry of p-adic groups, and the study of level zero Langlands correspondence. Scientists have long known that an effective way to study an object, mathematical or otherwise, is to study its symmetries. Mathematicians have developed this simple idea into a general theory in which mathematical symmetries are generalized and arranged into their own mathematical object called a group. Once this process of abstraction has structured the symmetries, the groups are brought back to a more concrete setting by representing them in terms of more familiar objects. Thus Representation Theory becomes a very important tool for mathematicians and other scientists. Dr. Reeder intends to study some of the basic structures of numbers by studying explicit examples of the representation theory that arise through this up and down process.
Please try later.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Reeder其他文献
Weyl group representations on zero weight spaces
零权空间上的 Weyl 群表示
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Pramod N. Achar;David Ben;Shrawan Kumar;Mark Reeder - 通讯作者:
Mark Reeder
On the Iwahori-spherical discrete series for $p$-adic Chevalley groups ; formal degrees and $L$-packets
关于 $p$-adic Chevalley 群的 Iwahori 球离散级数;
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Mark Reeder - 通讯作者:
Mark Reeder
Level-two structure of simply-laced Coxeter groups
- DOI:
10.1016/j.jalgebra.2004.11.010 - 发表时间:
2005-03 - 期刊:
- 影响因子:0.9
- 作者:
Mark Reeder - 通讯作者:
Mark Reeder
Arithmetic invariants of discrete Langlands parameters
离散朗兰兹参数的算术不变量
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
B. Gross;Mark Reeder - 通讯作者:
Mark Reeder
Exterior Powers of the Adjoint Representation
伴随代表的外部权力
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Mark Reeder - 通讯作者:
Mark Reeder
Mark Reeder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Reeder', 18)}}的其他基金
Explicit Methods for the Local Langlands Correspondence
当地朗兰对应的显式方法
- 批准号:
1701474 - 财政年份:2017
- 资助金额:
$ 5.23万 - 项目类别:
Continuing Grant
Local Langlands correspondence for reductive p-adic groups
还原 p-adic 群的局部 Langlands 对应
- 批准号:
1303418 - 财政年份:2013
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854909 - 财政年份:2009
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant
Explicit Local Langlands Correspondences
明确的当地朗兰通讯
- 批准号:
0801177 - 财政年份:2008
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant
Tamely Ramified Langlands Correspondence
驯服的分枝朗兰通讯
- 批准号:
0207231 - 财政年份:2002
- 资助金额:
$ 5.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
- 批准号:
9896279 - 财政年份:1998
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
- 批准号:
9622343 - 财政年份:1996
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of p-adic Groups
数学科学:p-adic 群的表示
- 批准号:
9304284 - 财政年份:1993
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Groups, P-adic Groups and Representation Theory
数学科学:算术群、P进群和表示论
- 批准号:
9104183 - 财政年份:1991
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant
相似海外基金
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 5.23万 - 项目类别:
Continuing Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
$ 5.23万 - 项目类别:
Continuing Grant
Research on p-adic Banach parabolically induced representations
p进Banach抛物线诱导表示的研究
- 批准号:
23H01065 - 财政年份:2023
- 资助金额:
$ 5.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bruhat-Tits theory in the representations of p-adic groups, and post-quantum cryptography
p-adic 群表示中的 Bruhat-Tits 理论和后量子密码学
- 批准号:
RGPIN-2020-05020 - 财政年份:2022
- 资助金额:
$ 5.23万 - 项目类别:
Discovery Grants Program - Individual
p-adic methods in number theory: eigenvarieties and cohomology of Shimura varieties for the study of L-functions and Galois representations
数论中的 p-adic 方法:用于研究 L 函数和伽罗瓦表示的 Shimura 簇的特征簇和上同调
- 批准号:
577144-2022 - 财政年份:2022
- 资助金额:
$ 5.23万 - 项目类别:
Alliance Grants
Representations of p-adic groups and dg-algebras
p-adic 群和 dg-代数的表示
- 批准号:
2602995 - 财政年份:2021
- 资助金额:
$ 5.23万 - 项目类别:
Studentship
Realising smooth representations of GL_2(Q_p) in p-adic de Rham cohomology
实现 p-adic de Rham 上同调中 GL_2(Q_p) 的平滑表示
- 批准号:
2597257 - 财政年份:2021
- 资助金额:
$ 5.23万 - 项目类别:
Studentship
CAREER: Representations of p-adic groups and different incarnations of the Langlands Program
职业:p-adic 群体的代表和朗兰兹纲领的不同体现
- 批准号:
2044643 - 财政年份:2021
- 资助金额:
$ 5.23万 - 项目类别:
Continuing Grant
Distinguished representations of reductive p-adic groups
还原p进群的杰出表示
- 批准号:
RGPIN-2017-06066 - 财政年份:2021
- 资助金额:
$ 5.23万 - 项目类别:
Discovery Grants Program - Individual
Representations of p-adic Covering Groups and Integrable Systems
p-adic 覆盖群和可积系统的表示
- 批准号:
2101392 - 财政年份:2021
- 资助金额:
$ 5.23万 - 项目类别:
Standard Grant