Tamely Ramified Langlands Correspondence
驯服的分枝朗兰通讯
基本信息
- 批准号:0207231
- 负责人:
- 金额:$ 10.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-06-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator attempts to classify square-integrable tamely ramified representations of split reductive p-adic groups G and their inner forms, by means of homomorphisms from the tame Weil-Deligne group into the dual group of G. This project is part of the local Langlands conjecture for such groups. The representations are partitioned into finite sets, called ``L-packets". The method is a p-adic analogue of Lusztig's Jordan decomposition for finite reductive groups. From a functorial point of view, the tame L-packets are bijective lifts of unipotent L-packets for quasi-split groups and their inner forms. Properties of the L-packets, such as formal degrees and Whittaker models, will also be investigated.Symmetry is an effective way to study mathematical and physical objects. A Group is a collection of symmetries, and Representation Theory is the study of how these symmetries manifest in different ways. As a simple example, there is a group of sixty symmetries consisting of permutations of five objects, and this group also manifests as the sixty symmetries of an icosohedron, and of the fullerene molecule. The investigator studies certain infinite groups of infinite dimensional symmetries. In the past forty years, mathematicians and physicists have guessed that there may be deep relations between such symmetries and fundamental, as yet undiscovered, properties of numbers. The investigator attempts to confirm part of these conjectures, and make them more explicit.
研究者试图通过从驯服的Weil-Deligne群到G的对偶群的同态,对分裂约化p-adic群G的平方可积驯服分歧表示及其内部形式进行分类.这个项目是局部朗兰兹猜想的一部分,这样的群体。这些表示被划分成有限的集合,称为“L-分组”。该方法是一个p-adic模拟Lusztig的约旦分解有限约化群。从函子的观点来看,驯服L-包是拟分裂群及其内部形式的幂幺L-包的双射提升。对称性是研究数学和物理对象的有效方法。群是对称性的集合,而表征论是研究这些对称性如何以不同的方式表现出来。举一个简单的例子,有一个由五个物体的排列组成的60个对称的群,这个群也表现为二十面体和富勒烯分子的60个对称。研究人员研究某些无限群的无限维对称性。在过去的40年里,数学家和物理学家们猜测,这种对称性与数字的基本性质之间可能存在着深刻的联系,但这些性质尚未被发现。调查人员试图证实这些陈述的一部分,并使其更加明确。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Reeder其他文献
Weyl group representations on zero weight spaces
零权空间上的 Weyl 群表示
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Pramod N. Achar;David Ben;Shrawan Kumar;Mark Reeder - 通讯作者:
Mark Reeder
On the Iwahori-spherical discrete series for $p$-adic Chevalley groups ; formal degrees and $L$-packets
关于 $p$-adic Chevalley 群的 Iwahori 球离散级数;
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Mark Reeder - 通讯作者:
Mark Reeder
Level-two structure of simply-laced Coxeter groups
- DOI:
10.1016/j.jalgebra.2004.11.010 - 发表时间:
2005-03 - 期刊:
- 影响因子:0.9
- 作者:
Mark Reeder - 通讯作者:
Mark Reeder
Arithmetic invariants of discrete Langlands parameters
离散朗兰兹参数的算术不变量
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
B. Gross;Mark Reeder - 通讯作者:
Mark Reeder
Exterior Powers of the Adjoint Representation
伴随代表的外部权力
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Mark Reeder - 通讯作者:
Mark Reeder
Mark Reeder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Reeder', 18)}}的其他基金
Explicit Methods for the Local Langlands Correspondence
当地朗兰对应的显式方法
- 批准号:
1701474 - 财政年份:2017
- 资助金额:
$ 10.48万 - 项目类别:
Continuing Grant
Local Langlands correspondence for reductive p-adic groups
还原 p-adic 群的局部 Langlands 对应
- 批准号:
1303418 - 财政年份:2013
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854909 - 财政年份:2009
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
Explicit Local Langlands Correspondences
明确的当地朗兰通讯
- 批准号:
0801177 - 财政年份:2008
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
L-Packets of Representations of P-Adic Groups
P-进群表示的 L-包
- 批准号:
9972579 - 财政年份:1999
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
- 批准号:
9896279 - 财政年份:1998
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
- 批准号:
9622343 - 财政年份:1996
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of p-adic Groups
数学科学:p-adic 群的表示
- 批准号:
9304284 - 财政年份:1993
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Groups, P-adic Groups and Representation Theory
数学科学:算术群、P进群和表示论
- 批准号:
9104183 - 财政年份:1991
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
相似海外基金
Ramified extensions of commutative ring spectra
交换环谱的分支扩展
- 批准号:
405031884 - 财政年份:2018
- 资助金额:
$ 10.48万 - 项目类别:
Priority Programmes
Study of unramified Iwasawa modules by using tamely ramified extensions
使用温和的分支扩展研究未分支的 Iwasawa 模块
- 批准号:
15K04791 - 财政年份:2015
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Positively ramified extensions and elliptic units
正分枝扩张和椭圆单位
- 批准号:
24540028 - 财政年份:2012
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ramified components of automorphic representations: local theory and its application to special L-values
自同构表示的分支分量:局部理论及其在特殊 L 值中的应用
- 批准号:
24540021 - 财政年份:2012
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotics of wildly ramified Galois extensions of local or global function fields
局部或全局函数域的疯狂分支伽罗瓦扩展的渐近
- 批准号:
171354361 - 财政年份:2010
- 资助金额:
$ 10.48万 - 项目类别:
Priority Programmes
Some geometric variational problems on ramified transportation and intersection homology
分支交通与交叉同调的一些几何变分问题
- 批准号:
0710714 - 财政年份:2007
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
Algebraic combinatorics and ramified covers of surfaces
代数组合和曲面的分支覆盖
- 批准号:
8907-2003 - 财政年份:2007
- 资助金额:
$ 10.48万 - 项目类别:
Discovery Grants Program - Individual
Towards ramification theory of automorphic representations : Ramified representations and their L-factors
迈向自同构表征的分支理论:分支表征及其 L 因子
- 批准号:
19540032 - 财政年份:2007
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic combinatorics and ramified covers of surfaces
代数组合和曲面的分支覆盖
- 批准号:
8907-2003 - 财政年份:2006
- 资助金额:
$ 10.48万 - 项目类别:
Discovery Grants Program - Individual
Algebraic combinatorics and ramified covers of surfaces
代数组合和曲面的分支覆盖
- 批准号:
8907-2003 - 财政年份:2005
- 资助金额:
$ 10.48万 - 项目类别:
Discovery Grants Program - Individual