IGERT: Computational Molecular Biology Training Group

IGERT:计算分子生物学培训小组

基本信息

  • 批准号:
    9972653
  • 负责人:
  • 金额:
    $ 241.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-08-01 至 2006-07-31
  • 项目状态:
    已结题

项目摘要

This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of a multidisciplinary graduate training program of education and researchin computational molecular biology. Due to advances in molecular biology over the past fifteen years, biological questions can now be approached at new levels of complexity. Rather than dissecting individual components of a biological system, system-wide analytical approaches can be pursued. A critical factor in this paradigm shift has been the availability of vast amounts of genomic sequence and expression data. Iowa State University will establish a Computational Molecular Biology Training Group to provide graduate students with the necessary skills to explore complex biological questions. This group will be composed of 25 investigators with diverse areas of expertise, including evolutionary, molecular and structural biology, computer science, mathematics and statistics. Students will be trained to discern biological information from genome sequence and expression data and will focus on four interrelated areas of research: genomics, bioinformatics, genome evolution, and macromolecular structure and function. By infusing training in the biological sciences with the analytic perspective of mathematics and computer science, Iowa State University will create an exciting learning environment in which to prepare students for the challenges and opportunities presented by the post-genomics era.IGERT is an NSF-wide program intended to facilitate the establishment of innovative, research-based graduate programs that will train a diverse group of scientists and engineers to be well-prepared to take advantage of a broad spectrum of career options. IGERT provides doctoral institutions with an opportunity to develop new, well-focussed multidisciplinary graduate programs that transcend organizational boundaries and unite faculty from several departments or institutions to establish a highly interactive, collaborative environment for both training and research. In this second year of the program, awards are being made to twenty-one institutions for programs that collectively span all areas of science and engineering supported by NSF. This specific award is supported by funds from the Directorates for Biological Sciences, for Computer and Information Science and Engineering, for Mathematical and Physical Sciences (Office of Multidisciplinary Activities), and for Education and Human Resources.
这一综合性研究生教育和研究培训(IGERT)奖支持建立计算分子生物学教育和研究的多学科研究生培训计划。由于分子生物学在过去15年中的进步,生物学问题现在可以以新的复杂性水平来处理。可以采用全系统的分析方法,而不是剖析生物系统的个别组成部分。这种范式转变的一个关键因素是大量基因组序列和表达数据的可获得性。爱荷华州立大学将成立一个计算分子生物学培训小组,为研究生提供探索复杂生物学问题的必要技能。该小组将由25名研究人员组成,他们拥有不同领域的专业知识,包括进化、分子和结构生物学、计算机科学、数学和统计学。学生将被训练从基因组序列和表达数据中识别生物信息,并将重点放在四个相互关联的研究领域:基因组学、生物信息学、基因组进化和大分子结构和功能。通过将数学和计算机科学的分析观点融入生物科学培训,爱荷华州立大学将创造一个令人兴奋的学习环境,让学生为后基因组时代带来的挑战和机遇做好准备。IGERT是一个NSF范围内的项目,旨在促进创新的、基于研究的研究生项目的建立,该项目将培养不同的科学家和工程师群体,为充分利用广泛的职业选择做好准备。IGERT为博士机构提供了一个机会,以开发新的、重点明确的、超越组织边界的多学科研究生课程,并团结来自几个系或机构的教师,为培训和研究建立一个高度互动、协作的环境。在该计划的第二年,将向21个机构颁发奖项,这些机构的项目共同涵盖了NSF支持的所有科学和工程领域。该奖项由生物科学理事会、计算机和信息科学与工程理事会、数学和物理科学理事会(多学科活动办公室)以及教育和人力资源理事会提供资金支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Voytas其他文献

Daniel Voytas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Voytas', 18)}}的其他基金

ERA-CAPS: Designing C4 breeding strategies using genetic enablers of C4 evolution
ERA-CAPS:利用 C4 进化的遗传推动因素设计 C4 育种策略
  • 批准号:
    1833402
  • 财政年份:
    2018
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Plant Genome Engineering using DNA Replicons
使用 DNA 复制子进行植物基因组工程
  • 批准号:
    1339209
  • 财政年份:
    2014
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Precise Engineering of Plant Genomes using Zinc Finger Nucleases
使用锌指核酸酶对植物基因组进行精确工程
  • 批准号:
    0923827
  • 财政年份:
    2009
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Continuing Grant
2010: Targeted Mutagenesis in Arabidopsis Using Zinc Finger Nucleases
2010:使用锌指核酸酶对拟南芥进行定向诱变
  • 批准号:
    0726267
  • 财政年份:
    2008
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Continuing Grant
A Homologous Recombination System for Plants Based on Zinc Finger Nucleases
基于锌指核酸酶的植物同源重组系统
  • 批准号:
    0501678
  • 财政年份:
    2005
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Continuing Grant
A Project-Oriented Molecular Biology/Genetics Laboratory Incorporating New Technologies
融合新技术的项目型分子生物学/遗传学实验室
  • 批准号:
    9451380
  • 财政年份:
    1994
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
  • 批准号:
    2414575
  • 财政年份:
    2024
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Building a computational infrastructure for disclosing performance information of molecular dynamics software
构建用于公开分子动力学软件性能信息的计算基础设施
  • 批准号:
    23K11328
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Travel Grant for the 27th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2023)
会议:第 27 届计算分子生物学研究国际会议 (RECOMB 2023) 旅费补助
  • 批准号:
    2325976
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Developing computational methods to identify of endogenous substrates of E3 ubiquitin ligases and molecular glue degraders
开发计算方法来鉴定 E3 泛素连接酶和分子胶降解剂的内源底物
  • 批准号:
    10678199
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
Molecular and Computational Tools for Identifying Somatic Mosaicism in Human Tissues
识别人体组织中体细胞镶嵌的分子和计算工具
  • 批准号:
    10661147
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
Equipment: MRI: Track 1 Acquisition of Expansion of the Molecular Education and Research Consortium in Undergraduate Computational Chemistry (MERCURY)
设备: MRI:本科计算化学分子教育和研究联盟扩展的轨道 1 收购 (MERCURY)
  • 批准号:
    2320718
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Standard Grant
Computational, anatomical, and molecular principles of system-wide visual encoding
全系统视觉编码的计算、解剖和分子原理
  • 批准号:
    10676656
  • 财政年份:
    2023
  • 资助金额:
    $ 241.66万
  • 项目类别:
Unraveling Silent Progression in MS Using Advanced Quantitative MRI, PET Molecular Imaging and Computational Neuroanatomy
利用先进的定量 MRI、PET 分子成像和计算神经解剖学揭示多发性硬化症的无声进展
  • 批准号:
    470218
  • 财政年份:
    2022
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Operating Grants
Development of computational models to understand the dynamic molecular recognition mechanisms of cannabinoid receptors
开发计算模型以了解大麻素受体的动态分子识别机制
  • 批准号:
    RGPIN-2021-03161
  • 财政年份:
    2022
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular and computational tools for regulatory genomics
调控基因组学的分子和计算工具
  • 批准号:
    RGPIN-2020-05425
  • 财政年份:
    2022
  • 资助金额:
    $ 241.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了