Precise Engineering of Plant Genomes using Zinc Finger Nucleases
使用锌指核酸酶对植物基因组进行精确工程
基本信息
- 批准号:0923827
- 负责人:
- 金额:$ 334.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Daniel F. Voytas (University of Minnesota)CoPIs: Drena L. Dobbs (Iowa State University), J. Keith Joung (Massachusetts General Hospital), Jennifer Kuzma (University of Minnesota) and Kan Wang (Iowa State University) Plants have remarkable biosynthetic capacities that can be harnessed to produce compounds of value for food, fuel, medicine and industry. Fully realizing the biosynthetic potential of plants, however, requires sophisticated tools to manipulate plant genomes. Specifically, it is desirable to make precise alterations to the plant genetic code, including DNA insertions, deletions and substitutions. Such precise modifications can be made through a process known as gene targeting or homologous recombination. Fundamentally, gene targeting is a DNA swapping reaction: a DNA fragment carrying a desired sequence is introduced into a plant cell, and it replaces the native copy of the gene. To enhance the efficiency of gene targeting, a chromosome break is created at the site of modification (the target). An enzyme called a zinc finger nuclease (ZFN) is used to generate the chromosome break. ZFNs have two components: a DNA recognition domain (a zinc finger array) and a nuclease that cleaves the chromosome. Zinc finger arrays can be designed to recognize diverse DNA sequences, thereby making it possible to modify any chromosomal target. Current research is directed at developing zinc finger nuclease-assisted gene targeting for widespread use in plants, including establishing key parameters for high frequency gene modification and robust methods for the design of zinc finger arrays. The project focuses on implementing gene targeting in rice, arguably the world's most important food crop. The outcome of the research will be a highly facile gene targeting system that can be employed in a variety of plant species. Because gene targeting introduces changes in plant genomes in a highly specific and controlled manner, crops generated through gene targeting may be met with greater public acceptance than traditional genetically modified crops. An efficient method for making precise modifications to plant genomes (gene targeting) is critical for detailed functional analysis of genes and genetic pathways. Gene targeting will also enable the development of new crop varieties, including those that better withstand pests, have enhanced food value, and produce compounds of industrial importance. Gene targeting differs fundamentally from transgenesis in that the resulting plant material may only have a single or few nucleotide changes that distinguish it from the parent. This precision suggests that gene targeting may mitigate some concerns about the use of genetically modified crops, which has limited the application of genetic engineering to plant agriculture. The project specifically explores the potential societal impacts of gene targeting. In addition, the project will train undergraduate and graduate students for work in plant molecular biology, computational biology and public policy. This diversity of research topics provides a rich interdisciplinary training environment and a unique opportunity for all project participants to learn about the impact of science on society. Access to software and data generated from this project can be obtained at www.zincfingers.org. DNA reagents are available at www.addgene.org.
PI:丹尼尔F. Voytas(明尼苏达大学)CoPIs:Drena L.多布斯(爱荷华州州立大学)、J.基思·贾斯珀(马萨诸塞州总医院)、詹妮弗·库兹马(明尼苏达大学)和王侃(爱荷华州州立大学)植物具有非凡的生物合成能力,可以利用这些能力生产对食品、燃料、医药和工业有价值的化合物。然而,充分实现植物的生物合成潜力需要复杂的工具来操纵植物基因组。 具体地,期望对植物遗传密码进行精确改变,包括DNA插入、缺失和取代。 这种精确的修饰可以通过称为基因靶向或同源重组的过程进行。 从根本上讲,基因打靶是一种DNA交换反应:将携带所需序列的DNA片段引入植物细胞,并取代基因的天然拷贝。 为了提高基因靶向的效率,在修饰位点(靶标)处产生染色体断裂。 一种叫做锌指核酸酶(ZFN)的酶被用来产生染色体断裂。 ZFN有两个组成部分:DNA识别结构域(锌指阵列)和切割染色体的核酸酶。 锌指阵列可以被设计为识别不同的DNA序列,从而使得修饰任何染色体靶成为可能。 目前的研究是针对开发锌指核酸酶辅助基因打靶在植物中的广泛使用,包括建立高频基因修饰的关键参数和锌指阵列设计的鲁棒方法。 该项目的重点是在水稻中实施基因靶向,水稻可以说是世界上最重要的粮食作物。 这项研究的成果将是一个非常容易的基因靶向系统,可用于各种植物物种。 由于基因靶向以高度特异性和可控的方式引入植物基因组的变化,通过基因靶向产生的作物可能比传统的转基因作物更容易被公众接受。 一种对植物基因组进行精确修饰的有效方法(基因打靶)对于基因和遗传途径的详细功能分析至关重要。 基因靶向还将使新作物品种的开发成为可能,包括那些更好地抵抗害虫、提高食品价值和生产具有工业重要性的化合物的品种。 基因靶向与转基因的根本区别在于,所产生的植物材料可能仅具有将其与亲本区分开的单个或几个核苷酸变化。 这种精确性表明,基因靶向可能会减轻对使用转基因作物的一些担忧,这种担忧限制了基因工程在植物农业中的应用。 该项目专门探讨了基因靶向的潜在社会影响。 此外,该项目还将培训本科生和研究生从事植物分子生物学、计算生物学和公共政策方面的工作。 研究课题的多样性为所有项目参与者提供了丰富的跨学科培训环境和了解科学对社会影响的独特机会。 该项目产生的软件和数据可在www.zincfinger.org上查阅,DNA试剂可在www.addgene.org上查阅。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Voytas其他文献
Daniel Voytas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Voytas', 18)}}的其他基金
ERA-CAPS: Designing C4 breeding strategies using genetic enablers of C4 evolution
ERA-CAPS:利用 C4 进化的遗传推动因素设计 C4 育种策略
- 批准号:
1833402 - 财政年份:2018
- 资助金额:
$ 334.97万 - 项目类别:
Standard Grant
Plant Genome Engineering using DNA Replicons
使用 DNA 复制子进行植物基因组工程
- 批准号:
1339209 - 财政年份:2014
- 资助金额:
$ 334.97万 - 项目类别:
Standard Grant
2010: Targeted Mutagenesis in Arabidopsis Using Zinc Finger Nucleases
2010:使用锌指核酸酶对拟南芥进行定向诱变
- 批准号:
0726267 - 财政年份:2008
- 资助金额:
$ 334.97万 - 项目类别:
Continuing Grant
A Homologous Recombination System for Plants Based on Zinc Finger Nucleases
基于锌指核酸酶的植物同源重组系统
- 批准号:
0501678 - 财政年份:2005
- 资助金额:
$ 334.97万 - 项目类别:
Continuing Grant
IGERT: Computational Molecular Biology Training Group
IGERT:计算分子生物学培训小组
- 批准号:
9972653 - 财政年份:1999
- 资助金额:
$ 334.97万 - 项目类别:
Continuing Grant
A Project-Oriented Molecular Biology/Genetics Laboratory Incorporating New Technologies
融合新技术的项目型分子生物学/遗传学实验室
- 批准号:
9451380 - 财政年份:1994
- 资助金额:
$ 334.97万 - 项目类别:
Standard Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
- 批准号:
2426065 - 财政年份:2024
- 资助金额:
$ 334.97万 - 项目类别:
Continuing Grant
CAREER: Elucidating trans-kingdom horizontal gene transfer mechanisms to improve plant genetic engineering
职业:阐明跨界水平基因转移机制以改进植物基因工程
- 批准号:
2340175 - 财政年份:2024
- 资助金额:
$ 334.97万 - 项目类别:
Continuing Grant
The shape of sustainable crop production - re-engineering plant architecture for sustainable food production
可持续作物生产的形态——为可持续粮食生产重新设计植物结构
- 批准号:
2878037 - 财政年份:2023
- 资助金额:
$ 334.97万 - 项目类别:
Studentship
Identifying, characterising and engineering plant cell wall degrading enzymes for biofuel production
识别、表征和改造用于生物燃料生产的植物细胞壁降解酶
- 批准号:
2885870 - 财政年份:2023
- 资助金额:
$ 334.97万 - 项目类别:
Studentship
Optimising plant symbiotic bacteria through quorum-sensing and engineering biology approaches for delivery of climate-smart, sustainable nitrogen fer
通过群体感应和工程生物学方法优化植物共生细菌,以提供气候智能型、可持续的氮铁
- 批准号:
2886691 - 财政年份:2023
- 资助金额:
$ 334.97万 - 项目类别:
Studentship
21ENGBIO: Plant microcompartment engineering for green production
21ENGBIO:绿色生产的植物微室工程
- 批准号:
BB/W013096/1 - 财政年份:2023
- 资助金额:
$ 334.97万 - 项目类别:
Research Grant
SBIR Phase I: Engineering the Plant Microbiome to Reduce Disease in Crops
SBIR 第一阶段:改造植物微生物组以减少作物疾病
- 批准号:
2232769 - 财政年份:2023
- 资助金额:
$ 334.97万 - 项目类别:
Standard Grant
Improving early plant growth in sweet corn by engineering the soil microbiome
通过改造土壤微生物组改善甜玉米的早期植物生长
- 批准号:
572867-2022 - 财政年份:2022
- 资助金额:
$ 334.97万 - 项目类别:
Alliance Grants
TRTech-PGR: Engineering Agrobacterium to Express a Type III Secretion System to Improve Plant Transformation and Genome Editing
TRTech-PGR:工程农杆菌表达 III 型分泌系统,以改善植物转化和基因组编辑
- 批准号:
2219792 - 财政年份:2022
- 资助金额:
$ 334.97万 - 项目类别:
Continuing Grant