Quantum Operator Approaches to Condensed Phase and Multidimensional Reaction Dynamics
凝聚相和多维反应动力学的量子算子方法
基本信息
- 批准号:9972864
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Steven Schwartz of Yeshiva University is supported by a grant from the Theoretical and Computational Chemistry Program to continue his research in quantum operator approaches to condensed phase multidimensional reaction dynamics. Schwartz' approach to the solution of the quantum dynamics of a system in solution is based on a Generalized Langevin Equation using a microscopic Hamiltonian system in which a discrete harmonic bath is bilinearly coupled to a system coordinate. Using an evolution operator expansion and resummation methodologies, Schwartz applies this methodology to the study of reaction coordinates in solvated chemical systems. In addition to extending the methodology to quantum simulations in many dimensional systems involving quantum activated rate theory, Schwartz will apply his operator approach to the following systems of chemical interest: 1) proton transfer from phenol to amine in aprotic, polar solvents; 2) internal proton transfer in glycine dissolved in water; and 3) hydride transfer in alcohol dehydrogenase reaction. Specific questions to be examined include the effect of spatially dependent friction, the temperature dependence of the bath, and the importance of promoting vibrations.A great deal of progress has been made in the theoretical treatment of gas phase chemical reactions of systems consisting of relatively few atoms. Using state-of-the-art theoretical methods, it is now possible to explain a great deal of the experimental detail for such systems. However, the large majority of reactions which are of interest to chemists occur in condensed phase systems in the presence of solvent. The theoretical models for treating such complex systems are in a much earlier stage of development. Schwartz is developing new theoretical approaches for dealing with solvated chemical systems undergoing chemical reactions where quantum effects may be important.
叶史瓦大学的史蒂文·施瓦茨得到了理论和计算化学项目的资助,继续他在凝聚相多维反应动力学的量子算子方法方面的研究。 Schwartz对溶液中系统的量子动力学的解的方法是基于使用微观哈密顿系统的广义朗之万方程,其中离散谐波浴双线性耦合到系统坐标。 使用演化算子扩展和再确认方法,施瓦茨将这种方法应用于溶剂化化学体系中反应坐标的研究。 除了将方法扩展到涉及量子激活速率理论的多维系统中的量子模拟之外,Schwartz还将他的操作员方法应用于以下化学感兴趣的系统:1)质子在非质子极性溶剂中从苯酚转移到胺; 2)溶解在水中的甘氨酸中的内部质子转移;和3)醇脱氢酶反应中的氢化物转移。 具体问题包括空间相关摩擦的影响、浴的温度依赖性以及促进振动的重要性。在由相对较少原子组成的系统的气相化学反应的理论处理方面已经取得了很大进展。使用最先进的理论方法,现在可以解释这种系统的大量实验细节。然而,化学家感兴趣的绝大多数反应都发生在溶剂存在下的凝聚相体系中。处理这种复杂系统的理论模型还处于发展的早期阶段。施瓦茨正在开发新的理论方法来处理溶剂化化学系统进行化学反应,量子效应可能是重要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Schwartz其他文献
1021-54 Multiplane Transesophageal Echo Has a Greater Impact on Clinical Care than Biplane: The VOTE Study
- DOI:
10.1016/0735-1097(95)93110-x - 发表时间:
1995-02-01 - 期刊:
- 影响因子:
- 作者:
Martin E. Goldman;Steven Goldstein;Itzhak Kronzon;Benico Barzilai;Ravin Davidoff;Anthony DeMaria;Howard Dittrich;Shunichi Homma;Michael Motro;Natesa Pandian;Michael Picard;Stacey Rosen;Steven Schwartz;Paul A. Tunick;Zvi Vered;Gad Keren;David Vorchheimer;Larry Baruch;Oma David;Jacqueline Budd - 通讯作者:
Jacqueline Budd
STANDARDIZATION OF PERI-OPERATIVE MANAGEMENT AFTER NORWOOD OPERATION HAS NOT IMPROVED 1 YEAR OUTCOMES
- DOI:
10.1016/s0735-1097(17)34016-0 - 发表时间:
2017-03-21 - 期刊:
- 影响因子:
- 作者:
Shilpa Shah;Steven Schwartz;Andrew Goodwin;Osami Honjo;Glen Van Arsdell;Mike Seed;Jennifer Russell;Alejandro Floh - 通讯作者:
Alejandro Floh
Realtime intracardiac two-dimensional echocardiography in the catheterization laboratory in humans
- DOI:
10.1016/0735-1097(90)91784-r - 发表时间:
1990-02-01 - 期刊:
- 影响因子:
- 作者:
Andrew Waintraub;Natesa Pandian;Deeb Salem;Steven Schwartz;Marvin Konstam;Vic Millen - 通讯作者:
Vic Millen
IMPROVING SURVIVAL BY TARGETING ERRORS
- DOI:
10.1016/s0735-1097(12)60739-6 - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
Frederic Jacques;Osami Honjo;Michael-Alice Moga;Francesco Grasso;Kenji Baba;Edward Hickey;Tilman Humpl;Steven Schwartz;Christopher Caldarone;Andrew Redington;Glen Van Arsdell - 通讯作者:
Glen Van Arsdell
642: The Presence of Concurrent Atypia in Patients with Prostatic Intraepithelial Neoplasia Found on Extended Core Biopsy Predicts for Cancer on Repeat Biopsy
- DOI:
10.1016/s0022-5347(18)37904-7 - 发表时间:
2004-04-01 - 期刊:
- 影响因子:
- 作者:
Joel Slaton;Nissrine Nakib;Neil Wasserman;Steven Schwartz - 通讯作者:
Steven Schwartz
Steven Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Schwartz', 18)}}的其他基金
UKRI/BBSRC-NSF/BIO: Evolving quantum mechanical tunnelling in enzymes
UKRI/BBSRC-NSF/BIO:酶中量子力学隧道效应的演变
- 批准号:
2244981 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Imperial College Astrophysics & Space Physics Consolidated Grant April 2013 - March 2016
帝国理工学院天体物理学
- 批准号:
ST/K001051/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
MAG and Data Assessment Studies for Cross-Scale: Follow-on Support
跨规模的 MAG 和数据评估研究:后续支持
- 批准号:
ST/H004246/1 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grant
ExoMars Magnetometry Support for PDR Phase
ExoMars 磁力测量支持 PDR 相位
- 批准号:
ST/G003122/1 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grant
Semiclassical and Quantum Methods for Chemical Reactions in Complex Systems
复杂系统中化学反应的半经典和量子方法
- 批准号:
0714118 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Quantum and Classical Approaches to Chemistry in Condensed Phases
凝聚相化学的量子和经典方法
- 批准号:
0139752 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing grant
I/UCRC: Multi-University Merger/North Carolina State University/Ohio State University/University of California, Davis
I/UCRC:多大学合并/北卡罗来纳州立大学/俄亥俄州立大学/加州大学戴维斯分校
- 批准号:
9900456 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
A Planning Grant for Participation in a Refined Expanded Industry/University Cooperative Research Center
参与精致扩大产学合作研究中心的规划补助金
- 批准号:
9731524 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
-- - 项目类别:
ARC Future Fellowships
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: 2024 Great Plains Operator Theory Symposium
会议:2024年大平原算子理论研讨会
- 批准号:
2400046 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
- 批准号:
2247702 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
- 批准号:
2247114 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Virginia Operator Theory and Complex Analysis Meeting
会议:弗吉尼亚算子理论与复分析会议
- 批准号:
2327592 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant