UKRI/BBSRC-NSF/BIO: Evolving quantum mechanical tunnelling in enzymes

UKRI/BBSRC-NSF/BIO:酶中量子力学隧道效应的演变

基本信息

  • 批准号:
    2244981
  • 负责人:
  • 金额:
    $ 64.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-12-01 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Enzymes are the most effective catalysts on the planet. They have the capability of speeding chemical reactions by a factor of up to 1015 over uncatalyzed reactions. Amazingly, after decades of research, the way this occurs is still in many instances a mystery to chemists and biologists. In addition, while chemistry is governed by the laws of Quantum Mechanics, there is still controversy over the importance of quantum mechanical effects in enzymatic reactions. The use of quantum principles would potentially allow many technological advances such as creating bio-inspired catalysts that were immune to low temperatures and have broader reactivities. This project explores the way such quantum effects may be built into enzyme function using the technology known as directed evolution. A Nobel prize winning technology that allows scientists to create enzyme functions in the laboratory using evolutionary principles in months rather than millennia. This project will train pre-and post-doctoral students in interdisciplinary research and broaden their experience by exposing them to international research collaboration.The functions of enzymes remain a topic of hot debate in the scientific community. Two of the most important areas of controversy are the importance of the coupling of dynamics to enzyme function, and what that has to do with the importance of quantum effects such as tunneling on enzyme rate. This project explores such question through the application of rare event sampling for enzymatic chemistry. The PI has pioneered such studies in particular the use of Transition Path Sampling coupled with committor distribution analysis to identify rigorous reaction coordinates. The PI has also developed methods to include quantum dynamics via path integral simulations. These will be coupled with directed evolution experiments of with UK collaborators who in their projects will craft artificial enzymes optimized for example to transfer deuterons rather than protons. These experiments coupled with the project described will show if quantum capabilities can be built into artificial enzymes, and just what those capabilities will allow. This collaborative US/UK project is supported by the US National Science Foundation and the UK Biotechnology and Biological Sciences Research Council where NSF funds the US investigator and BBSRC funds the UK partner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
酶是地球上最有效的催化剂。它们具有加速化学反应的能力,比非催化反应快1015倍。令人惊讶的是,经过几十年的研究,这种情况发生的方式在许多情况下仍然是化学家和生物学家的一个谜。此外,虽然化学受量子力学定律的支配,但在酶反应中量子力学效应的重要性仍然存在争议。量子原理的使用可能会使许多技术进步成为可能,例如创造出不受低温影响并具有更广泛反应性的生物启发催化剂。该项目探索了这种量子效应如何使用被称为定向进化的技术构建酶功能。一项获得诺贝尔奖的技术,使科学家能够在实验室中使用进化原理在几个月而不是几千年内创造酶功能。本项目将培养跨学科研究的博士生和博士后学生,并通过国际研究合作扩大他们的经验。酶的功能仍然是科学界争论的热点。两个最重要的争议领域是动力学与酶功能耦合的重要性,以及这与量子效应(如隧道效应)对酶速率的重要性有什么关系。本计画借由稀有事件取样于酵素化学之应用,探讨此一问题。PI开创了这种研究,特别是使用过渡路径采样与提交者分布分析相结合,以确定严格的反应坐标。PI还开发了通过路径积分模拟包含量子动力学的方法。这些将与英国合作者的定向进化实验相结合,这些合作者将在他们的项目中制作人工酶,例如优化转移氘而不是质子。这些实验与所描述的项目相结合,将展示量子能力是否可以构建到人工酶中,以及这些能力将允许什么。这个美国/英国的合作项目得到了美国国家科学基金会和英国生物技术和生物科学研究理事会的支持,NSF资助美国研究者,BBSRC资助英国合作伙伴。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Schwartz其他文献

1021-54 Multiplane Transesophageal Echo Has a Greater Impact on Clinical Care than Biplane: The VOTE Study
  • DOI:
    10.1016/0735-1097(95)93110-x
  • 发表时间:
    1995-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Martin E. Goldman;Steven Goldstein;Itzhak Kronzon;Benico Barzilai;Ravin Davidoff;Anthony DeMaria;Howard Dittrich;Shunichi Homma;Michael Motro;Natesa Pandian;Michael Picard;Stacey Rosen;Steven Schwartz;Paul A. Tunick;Zvi Vered;Gad Keren;David Vorchheimer;Larry Baruch;Oma David;Jacqueline Budd
  • 通讯作者:
    Jacqueline Budd
STANDARDIZATION OF PERI-OPERATIVE MANAGEMENT AFTER NORWOOD OPERATION HAS NOT IMPROVED 1 YEAR OUTCOMES
  • DOI:
    10.1016/s0735-1097(17)34016-0
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Shilpa Shah;Steven Schwartz;Andrew Goodwin;Osami Honjo;Glen Van Arsdell;Mike Seed;Jennifer Russell;Alejandro Floh
  • 通讯作者:
    Alejandro Floh
Realtime intracardiac two-dimensional echocardiography in the catheterization laboratory in humans
  • DOI:
    10.1016/0735-1097(90)91784-r
  • 发表时间:
    1990-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Waintraub;Natesa Pandian;Deeb Salem;Steven Schwartz;Marvin Konstam;Vic Millen
  • 通讯作者:
    Vic Millen
IMPROVING SURVIVAL BY TARGETING ERRORS
  • DOI:
    10.1016/s0735-1097(12)60739-6
  • 发表时间:
    2012-03-27
  • 期刊:
  • 影响因子:
  • 作者:
    Frederic Jacques;Osami Honjo;Michael-Alice Moga;Francesco Grasso;Kenji Baba;Edward Hickey;Tilman Humpl;Steven Schwartz;Christopher Caldarone;Andrew Redington;Glen Van Arsdell
  • 通讯作者:
    Glen Van Arsdell
642: The Presence of Concurrent Atypia in Patients with Prostatic Intraepithelial Neoplasia Found on Extended Core Biopsy Predicts for Cancer on Repeat Biopsy
  • DOI:
    10.1016/s0022-5347(18)37904-7
  • 发表时间:
    2004-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joel Slaton;Nissrine Nakib;Neil Wasserman;Steven Schwartz
  • 通讯作者:
    Steven Schwartz

Steven Schwartz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Schwartz', 18)}}的其他基金

Imperial College Astrophysics & Space Physics Consolidated Grant April 2013 - March 2016
帝国理工学院天体物理学
  • 批准号:
    ST/K001051/1
  • 财政年份:
    2013
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
Cluster Science Centre 2010
集群科学中心 2010
  • 批准号:
    ST/I000585/1
  • 财政年份:
    2010
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
MAG and Data Assessment Studies for Cross-Scale: Follow-on Support
跨规模的 MAG 和数据评估研究:后续支持
  • 批准号:
    ST/H004246/1
  • 财政年份:
    2009
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
Cluster Science Centre
集群科学中心
  • 批准号:
    ST/H00422X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
ExoMars Magnetometry Support for PDR Phase
ExoMars 磁力测量支持 PDR 相位
  • 批准号:
    ST/G003122/1
  • 财政年份:
    2008
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
Semiclassical and Quantum Methods for Chemical Reactions in Complex Systems
复杂系统中化学反应的半经典和量子方法
  • 批准号:
    0714118
  • 财政年份:
    2007
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Continuing Grant
Quantum and Classical Approaches to Chemistry in Condensed Phases
凝聚相化学的量子和经典方法
  • 批准号:
    0139752
  • 财政年份:
    2002
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Continuing grant
Quantum Operator Approaches to Condensed Phase and Multidimensional Reaction Dynamics
凝聚相和多维反应动力学的量子算子方法
  • 批准号:
    9972864
  • 财政年份:
    1999
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Standard Grant
I/UCRC: Multi-University Merger/North Carolina State University/Ohio State University/University of California, Davis
I/UCRC:多大学合并/北卡罗来纳州立大学/俄亥俄州立大学/加州大学戴维斯分校
  • 批准号:
    9900456
  • 财政年份:
    1999
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Continuing Grant
A Planning Grant for Participation in a Refined Expanded Industry/University Cooperative Research Center
参与精致扩大产学合作研究中心的规划补助金
  • 批准号:
    9731524
  • 财政年份:
    1998
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Standard Grant

相似海外基金

BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
  • 批准号:
    BB/W017865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
  • 批准号:
    BB/Y008758/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
  • 批准号:
    BB/Y008774/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
  • 批准号:
    2321840
  • 财政年份:
    2023
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Continuing Grant
UKRI/BBSRC-NSF/BIO:Hidden costs of infection: mechanisms by which parasites disrupt host-microbe symbioses and alter development
UKRI/BBSRC-NSF/BIO:感染的隐性成本:寄生虫破坏宿主-微生物共生并改变发育的机制
  • 批准号:
    2322173
  • 财政年份:
    2023
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Continuing Grant
21-BBSRC/NSF-BIO: Developing large serine integrases as tools for constructing and manipulating synthetic replicons.
21-BBSRC/NSF-BIO:开发大型丝氨酸整合酶作为构建和操作合成复制子的工具。
  • 批准号:
    BB/X012085/1
  • 财政年份:
    2023
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
UKRI/BBSRC-NSF/BIO Determining the Roles of Fusarium Effector Proteases in Plant Pathogenesis
UKRI/BBSRC-NSF/BIO 确定镰刀菌效应蛋白酶在植物发病机制中的作用
  • 批准号:
    BB/X012131/1
  • 财政年份:
    2023
  • 资助金额:
    $ 64.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了