Investigations of the Nonlinear Dynamics of Machining

加工非线性动力学研究

基本信息

  • 批准号:
    9973273
  • 负责人:
  • 金额:
    $ 6.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-09-01 至 2000-08-31
  • 项目状态:
    已结题

项目摘要

This grant will facilitate a natural change in the P.I.'s research emphasis to Industrial Mathematics. The shift in her research emphasis from nonlinear dynamics Industrial Mathematics serves both a personal research objective and a leadership objective in the training of employable mathematics students. Industrial Mathematics is still in its early stages as a field and participation in it at this point could increase the P.I.'s influence in the applied mathematics community, with increased potential for leadership roles in future. The research proposed involves investigations of chatter instability in high-speed machining. Chatter is a self-excited oscillation between the machining tool and the work piece that limits productivity of machining operations, reduces the quality of the product and shortens machine tool life. Up until recently, models have been primarily linear, with delay terms in the case of regenerative chatter. Nonlinear models are currently being developed, and have had some success in predicting behavior that may be described in part by low dimensional systems. In the aircraft industry this problem has received intense scrutiny, andthe work of the P.I.'s collaborator at Boeing (Dr. Abe Askari) has been in the development of finite element models for metal cutting. A union of the two techniques, large scale numerical simulation and low dimensional models, is the goal of the research in this proposal.
这笔拨款将促进P.I.S研究重点向工业数学的自然转变。她的研究重点从非线性动力学转向工业数学,这既是个人的研究目标,也是培养有就业能力的数学学生的领导目标。作为一个领域,工业数学仍处于早期阶段,在这一点上参与进来可能会增加P.I.S在应用数学界的影响力,并在未来发挥更大的领导作用。所提出的研究涉及高速加工中颤振不稳定性的研究。颤振是加工工具和工件之间的一种自激振荡,它限制了加工操作的生产率,降低了产品质量,缩短了机床寿命。直到最近,模型基本上是线性的,在再生颤振的情况下带有滞后项。目前正在开发非线性模型,并在预测可能部分由低维系统描述的行为方面取得了一些成功。在飞机行业,这个问题受到了严格的审查,波音公司的私人助理S博士(Abe Askari博士)一直在开发金属切割的有限元模型。大型数值模拟和低维模型这两种技术的结合是本方案研究的目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Stone其他文献

A novel pentamer versus pentamer approach to generating neutralizers of verotoxin 1.
一种新的五聚体与五聚体方法来产生维罗毒素 1 的中和剂。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Emily Stone;T. Hirama;Wangxue Chen;A. Sołtyk;J. Brunton;C. Mackenzie;Jianbing Zhang
  • 通讯作者:
    Jianbing Zhang
Predictors of Youth Empathy: Early Adolescents' Perceptions of Maternal and Paternal Support
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Emily Stone
  • 通讯作者:
    Emily Stone
P3.07-019 AMDAT Lung, An Ideal Lung Cancer MDT Dataset: Topic: Other – Geographical Differences
  • DOI:
    10.1016/j.jtho.2016.11.2210
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emily Stone;Nicole Rankin;Jane Phillips;Kwun Fong;Alistair Miller;Geraldine Largey;Robert Zielinski;Peter Flynn;David Currow;Tim Shaw
  • 通讯作者:
    Tim Shaw
A Prospective Observational Study of Physical Activity Levels and Physical Fitness of People at High Risk for Lung Cancer
肺癌高危人群体力活动水平和体质的前瞻性观察研究
  • DOI:
    10.1016/j.jtocrr.2024.100633
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Bonney;Catherine L. Granger;Daniel Steinfort;Henry M. Marshall;Emily Stone;Annette McWilliams;F. Brims;P. Fogarty;Linda Lin;Jiashi Li;Siyuan Pang;Stephen Lam;Kwun M. Fong;Renee Manser
  • 通讯作者:
    Renee Manser
A pentavalent single-domain antibody approach to tumor antigen discovery and the development of novel proteomics reagents.
用于肿瘤抗原发现和新型蛋白质组学试剂开发的五价单域抗体方法。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Jianbing Zhang;Qinggang Li;Thanh;Tammy‐Lynn Tremblay;Emily Stone;R. To;J. Kelly;C. Roger MacKenzie
  • 通讯作者:
    C. Roger MacKenzie

Emily Stone的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Stone', 18)}}的其他基金

Dynamic Modeling in Academic and Industrial Biochemical Processes
学术和工业生化过程中的动态建模
  • 批准号:
    0621830
  • 财政年份:
    2005
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Dynamic Modeling in Academic and Industrial Biochemical Processes
学术和工业生化过程中的动态建模
  • 批准号:
    0408211
  • 财政年份:
    2005
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Archetypal Analysis of 2D Patterns in Emergent Distributed Computation
突发分布式计算中二维模式的原型分析
  • 批准号:
    0504325
  • 财政年份:
    2005
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Dynamics of High-Speed Machining
高速加工动力学
  • 批准号:
    0104818
  • 财政年份:
    2001
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Intermountain/Southwest Conference on Industrial and Interdisciplinary Mathematics
山间/西南工业和跨学科数学会议
  • 批准号:
    0123533
  • 财政年份:
    2001
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
University-Industry Cooperative Research in the Dynamics of High-Speed Machining: Senior Research Fellowship
高速加工动力学的产学合作研究:高级研究奖学金
  • 批准号:
    0072908
  • 财政年份:
    2000
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Principles and Applications of Nonlinear Dynamics: Research Experiences for Undergraduates Site
数学科学:非线性动力学原理与应用:本科生研究经历网站
  • 批准号:
    9619413
  • 财政年份:
    1997
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Archetypal Analysis Applied to Dynamical Systems
数学科学:应用于动力系统的原型分析
  • 批准号:
    9622642
  • 财政年份:
    1996
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Archetypal Analysis of Complex Spatio-Temporal Data
数学科学:复杂时空数据的原型分析
  • 批准号:
    9510284
  • 财政年份:
    1995
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant

相似海外基金

New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Fellowship
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
  • 批准号:
    2348908
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
  • 批准号:
    2350356
  • 财政年份:
    2024
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
Probing Intermolecular Dynamics with Nonlinear Ultrafast THz Spectroscopy
用非线性超快太赫兹光谱探测分子间动力学
  • 批准号:
    2316042
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Coherent Control of Nonlinear Schrodinger Dynamics in the Presence of Uncertainty
博士后奖学金:MPS-Ascend:不确定性情况下非线性薛定谔动力学的相干控制
  • 批准号:
    2316622
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Fellowship Award
CAREER: Modeling the Loosening of Bolted Joints due to Nonlinear Dynamics of Structural Assemblies
职业:对结构组件非线性动力学引起的螺栓接头松动进行建模
  • 批准号:
    2237715
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Standard Grant
Nonlinear Optical Analysis of Molecular Composition and Dynamics within Heterogeneous Assemblies
异质组装体中分子组成和动力学的非线性光学分析
  • 批准号:
    2305178
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Continuing Grant
A Leap in the Dynamics Study of Liquid Interface by Evolved Ultrafast Nonlinear Spectroscopy
演化超快非线性光谱学在液体界面动力学研究中的飞跃
  • 批准号:
    23H00292
  • 财政年份:
    2023
  • 资助金额:
    $ 6.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了