Kinetic Theory Method for Large Eddy Simulation of Turbulence
湍流大涡模拟的动力学理论方法
基本信息
- 批准号:9974289
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9974289In this work, we plan to explore and apply a fundamentally new approach to large-eddy simulation (LES) of turbulence, viz. the use of a Boltzmann kinetic level representation of the flow. Conventional approaches to LES are based on solving a system of modified Navier-Stokes equations at the continuum level. While such an approach has achieved many interesting results, it also encounters intrinsic difficulties (e.g. in providing faithful turbulent behavior at boundaries). Owing to recent successes with the lattice Boltzmann method, we believe there is significant potential in approaching the problem from a new angle. That is, we propose the use of the Boltzmann equation representation of fluid dynamics. Such a representation is not only suitable for describing particle motions, but may also be a useful way of studying large-scale fluid turbulence properties once some appropriate averaging procedure is constructed. In this work, we plan to carry out an extensive series of theoretical and computational studies of turbulence dynamics by formulating such a Boltzmann description. The specific tasks include model formulation, simulation results, memory and history effects, reformulation of wall models and boundary conditions, and initial applications to multiphase turbulent flows.The work to be done here may have long-lasting impact on our ability to simulate fluid flows in real-world systems. The huge range of eddy sizes in turbulence precludes direct solution of the flow equations at all scales for full-scale systems. The novelty of the lattice Boltzmann method is that it circumvents some of the intrinsic limitations of conventional computers in order to achieve realistic flow simulations. By coupling of this method to advanced ideas on large-eddy simulation, we expect to achieve progress that would not otherwise be possible on these difficult flow problems. In particular, the lattice Boltzmann method for large-eddy simulation allows the efficient formulation of near-wall boundary conditions that have so far escaped analysis. It is also possible that the new formulations to be established here will suggest new computer architectures that will enable full-scale flow simulations.
9974289在这项工作中,我们计划探索并应用一种全新的湍流大涡模拟(LES)方法,即。使用玻尔兹曼动力学水平表示流动。 LES 的传统方法基于在连续体水平上求解修正的纳维-斯托克斯方程组。 虽然这种方法取得了许多有趣的结果,但它也遇到了内在的困难(例如,在边界处提供忠实的湍流行为)。 由于格子玻尔兹曼方法最近取得的成功,我们相信从新角度解决该问题具有巨大的潜力。 也就是说,我们建议使用流体动力学的玻尔兹曼方程表示。这种表示不仅适合描述粒子运动,而且一旦构建了一些适当的平均程序,也可能成为研究大规模流体湍流特性的有用方法。 在这项工作中,我们计划通过制定这样的玻尔兹曼描述来开展一系列广泛的湍流动力学理论和计算研究。 具体任务包括模型制定、模拟结果、记忆和历史效应、壁面模型和边界条件的重新制定,以及多相湍流的初步应用。这里要做的工作可能会对我们模拟现实系统中流体流动的能力产生长期影响。 湍流中涡流尺寸的巨大变化使得无法直接求解全尺度系统的所有尺度的流动方程。 格子玻尔兹曼方法的新颖之处在于它规避了传统计算机的一些固有局限性,以实现真实的流动模拟。 通过将该方法与大涡模拟的先进思想相结合,我们期望在这些困难的流动问题上取得原本不可能取得的进展。 特别是,用于大涡模拟的格子玻尔兹曼方法可以有效地制定迄今为止尚未进行分析的近壁边界条件。 这里建立的新公式也可能会提出新的计算机架构,从而实现全面的流动模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Orszag其他文献
Steven Orszag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Orszag', 18)}}的其他基金
Mathematical Sciences: Local Hyperchannel Superworkstation-Minisupercomputer Interconnect for Fluid Mechanical Studies
数学科学:用于流体力学研究的本地超通道超级工作站-小型超级计算机互连
- 批准号:
9106162 - 财政年份:1991
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Generalized Turbulence Transport Modelling of Oceanic Flows
海洋流的广义湍流传输模型
- 批准号:
9010851 - 财政年份:1990
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Integrated Analytical/Numerical Methods for Advanced Scientific Computing Applications
用于高级科学计算应用的集成分析/数值方法
- 批准号:
8906292 - 财政年份:1989
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Joint US/Taiwan Workshop on Recent Advances in ComputationalFluid Dynamics, Princeton, NJ, September 1987
美国/台湾计算流体动力学最新进展联合研讨会,新泽西州普林斯顿,1987 年 9 月
- 批准号:
8709105 - 财政年份:1987
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Generalized Turbulence Transport Modelling of Rotating, Stratified Oceanic Flows
旋转层状海洋流的广义湍流传输模型
- 批准号:
8716027 - 财政年份:1987
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Supercomputer Resources in support ofthe Princeton University/DARPA URI Mathematical Theory of Complex Flows in Complex Geometrics
数学科学:支持普林斯顿大学/DARPA URI 复杂几何中的复杂流动数学理论的超级计算机资源
- 批准号:
8707354 - 财政年份:1987
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Numerical Studies of Convection at Low Prandtl Numbers
数学科学:低普朗特数下对流的数值研究
- 批准号:
8411169 - 财政年份:1985
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Numerical Simulation of Transition to Chaos in Finite Containers
有限容器中混沌过渡的数值模拟
- 批准号:
8514128 - 财政年份:1985
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Numerical Methods for Atmospheric Flow Problems
大气流动问题的数值方法
- 批准号:
8414410 - 财政年份:1984
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Numerical Simulation of Transition to Chaos in Finite Containers
有限容器中混沌过渡的数值模拟
- 批准号:
8215695 - 财政年份:1983
- 资助金额:
$ 18万 - 项目类别:
Continuing grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Development of a method for designing content for viewing that fosters the ability to perceive based on information foraging theory
基于信息搜寻理论开发一种培养感知能力的观看内容设计方法
- 批准号:
23K11334 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
- 批准号:
23K03106 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design Theory for Membrane-Targeted Radionuclide Therapeutic Agents Using Contact Bubble Bilayer Method
接触气泡双层法膜靶向放射性核素治疗剂的设计理论
- 批准号:
23K18263 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Item Bank Calibration and Replenishment for Computerized Adaptive Testing in Small Scale Assessments: Method, Theory, and Application
小规模评估中计算机化自适应测试的题库校准和补充:方法、理论和应用
- 批准号:
2243044 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
A Hyperheuristic Method Using The Nonlinear Dynamical Theory for Next-Generation Delivery Planning
使用非线性动力学理论的超启发式方法进行下一代交付计划
- 批准号:
23K04274 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Proposal of Cube Machining Test Method Based on Form-Shaping-Functinon Theory for Machine Tools
基于形-形-函数理论的机床立方体加工测试方法的提出
- 批准号:
22H01382 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The WKB method via homological perturbation theory
基于同调微扰理论的 WKB 方法
- 批准号:
572315-2022 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
University Undergraduate Student Research Awards
Development of a novel histopathological examination method for castration-resistant prostate cancer focusing on neutral theory of molecular evolution
以分子进化中性理论为重点,开发去势抵抗性前列腺癌的新型组织病理学检查方法
- 批准号:
22K09444 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)