Dynamic Employer-Household Data and the Social Data Infrastructure

动态雇主家庭数据和社交数据基础设施

基本信息

  • 批准号:
    9978093
  • 负责人:
  • 金额:
    $ 492.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-10-01 至 2005-09-30
  • 项目状态:
    已结题

项目摘要

The maturation of the information age has created new challenges. Governments, faced with rapidly changing economies and societies are forced to make far-reaching economic and social policy decisions. These decisions, however, are based on limited static, and expensive survey data. At the same time, large administrative data sets are available that are derived from data collected from households, business establishments and governmental entities. These data, which could describe the dynamic interactions of workers, businesses, government and society, are not fully used in the United States, not simply because the unique advantages of these data have not been clear, but also because key issues of conf dentiality and access have not been fully addressed. This outcome has come at substantial cost. Linked data, if used wisely, have a great deal of scientific importance and can enhance our basic social data infrastructure in a number of ways. They can also be used to reduce respondent burden, increase data quality, and enhance the information available to the federal, state and local agencies which rely on Census Bureau data for decision making. In addition, these data can provide a valuable tool to the research community. This research proposal will create three prototype data sets based upon the Census Bureau's demographic and economic products and using link information that permits the data sets to be longitudinal in both the household/individual and firm/establishment dimensions. The Principal Investigators, the Census Bureau, and other external researchers will use these data to examine the value of the claims made above. These data sets, while of immense use in their own right, will also advance knowledge in two additional ways. First, by creating the data and developing the access modality, the research team will explicitly address a series of confidentiality and access/availability issues, using internal Census Bureau expertise and that of external researchers at Comell University, the Urban Institute, the University of Maryland and NCSA. Second, the project will advance the knowledge of both linkage technology and the statistical properties of linked data so that researchers in all disciplines can use these techniques. The proposal delineates an extensive collaboration with the Census Bureau, which is indeed a major sponsor of the project, in addition to three European statistical agencies. The infrastructure project expects to involve additional government and private sector partners, particularly as the confidentiality issues are more fully addressed. An innovative set of access support tools that combine a complete simulated environment (at the Comell University support site) with the latest in web-based collaboration tools (from the NCSA at the University of Illinois) will be developed. These tools will be integrated with videoJcomputer teleconferencing access to the Census Bureau and Cornell sites. Under carefully specified access rules that encompass established confidentiality and disclosure review procedures, the Census Bureau will support external research access to the linked data, using the web-based support tools and the video teleconferencing facilities. This external research access will go beyond "state of the art" and its enhancement is another major activity covered in the proposal. The Cornell University component also includes the support of a restricted-access data site that will house confidential linked data from the national statistical agencies of other countries. Linked French data from INSEE have already been approved for this site. Statistics Sweden has expressed a willingness to complete an agreement that would allow linked Swedish data. The DIW in Germany will release a linked version of the GSOEP to the site, if it is funded. Efforts continue to negotiate restricted access agreements with other national agencies. The restricted access data site provides linked data analysis tools and a supercomputer facility for use with these data. The new knowledge that can be generated from these data is potentially far reaching. The prototype American data sets provide the capacity to address fundamental questions in social and economic behavior. The restricted-access data from other countries provides a laboratory in which to test the generality of results found for a particular country. All of the data advances in the proposal provide the opportunity to discover technological advances in confidentiality protection while enabling new partnerships to be formed across disciplines that focus on understanding social and economic systems, organizations and institutions. Additional information concerning this proposal is available at http://old-instructl.cit.cornell.edu:8000/nsf-infrastructure/
信息时代的成熟带来了新的挑战。面对迅速变化的经济和社会,各国政府被迫作出影响深远的经济和社会政策决定。然而,这些决定是基于有限的静态和昂贵的调查数据。与此同时,从家庭、商业机构和政府实体收集的数据中获得了大量的行政数据集。这些数据可以描述工人、企业、政府和社会之间的动态互动,但在美国没有得到充分利用,这不仅仅是因为这些数据的独特优势还不清楚,还因为配置和访问的关键问题还没有得到充分解决。这一结果付出了巨大的代价。如果明智地使用,关联数据具有很大的科学重要性,可以通过多种方式增强我们的基本社会数据基础设施。它们还可用于减轻受访者的负担,提高数据质量,并为依赖人口普查局数据进行决策的联邦、州和地方机构提供更多信息。此外,这些数据可以为研究界提供一个有价值的工具。 这项研究提案将根据人口普查局的人口和经济产品,并利用链接信息,建立三个原型数据集,使数据集在家庭/个人和公司/机构两个方面都具有纵向性。主要调查员,人口普查局和其他外部研究人员将使用这些数据来检查上述声明的价值。这些数据集虽然本身用途巨大,但也将以另外两种方式促进知识。首先,通过创建数据和开发访问模式,研究小组将明确解决一系列保密和访问/可用性问题,使用内部人口普查局的专业知识和科梅尔大学,城市研究所,马里兰州和国家能力自评的外部研究人员。第二,该项目将促进对链接技术和链接数据统计特性的了解,以便所有学科的研究人员都能使用这些技术。该提案描述了与人口普查局的广泛合作,人口普查局实际上是该项目的主要赞助者,此外还有三个欧洲统计机构。基础设施项目预计将涉及更多的政府和私营部门伙伴,特别是在保密问题得到更充分解决的情况下。 将开发一套创新的访问支持工具,将一个完整的模拟环境(在科梅尔大学支持网站)与最新的基于网络的协作工具(来自伊利诺伊大学的NCSA)相结合。这些工具将与进入人口普查局和康奈尔网站的视频/计算机电话会议相结合。人口普查局将根据包括既定保密和披露审查程序在内的详细规定的查阅规则,利用网上支助工具和视频电话会议设施,支持外部研究人员查阅链接数据。这种外部研究访问将超越“最先进的”,其增强是提案中涵盖的另一项主要活动。 康奈尔大学的组成部分还包括支持一个限制访问的数据网站,该网站将存放其他国家国家统计机构提供的保密链接数据。法国国家统计和经济研究所(INSEE)的相关法国数据已被批准用于该网站。瑞典统计局表示愿意完成一项协议,允许瑞典数据的链接。如果得到资助,德国的DIW将向该网站发布GSOEP的链接版本。继续努力与其他国家机构谈判限制准入协定。限制访问数据网站提供链接的数据分析工具和超级计算机设施,以使用这些数据。 从这些数据中产生的新知识可能具有深远的影响。原型美国数据集提供了解决社会和经济行为中基本问题的能力。来自其他国家的限制获取的数据提供了一个实验室,可以在其中检验为特定国家发现的结果的普遍性。提案中的所有数据进步都提供了发现保密保护技术进步的机会,同时使跨学科的新伙伴关系能够形成,重点是了解社会和经济系统,组织和机构。 有关该提案的更多信息,请访问http://old-instructl.cit.cornell.edu:8000/nsf-infrastructure/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Abowd其他文献

Data Quality Issues
数据质量问题
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Abowd;J. Haltiwanger;Bryce E. Stephens
  • 通讯作者:
    Bryce E. Stephens
Differentially Private Methods for Validation Servers
验证服务器的差异私有方法
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrés F. Barrientos;Aaron R. Williams;C. Bowen;John Abowd;Jim Cilke;J. Debacker;Nada Eissa;Rick Evans;Dan Feenberg;Max Ghenis;Nick Hart;Matt Jensen;Barry Johnson;I. Lurie;Shelly Martinez;Robert Moffitt;Amy O’Hara;Jerry Reiter;Emmanuel Saez;Wade Shen;Aleksandra Slavković;Salil P. Vadhan;Lars Vilhuber IV Acknowledgments
  • 通讯作者:
    Lars Vilhuber IV Acknowledgments

John Abowd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Abowd', 18)}}的其他基金

TC: Large: Collaborative Research: Practical Privacy: Metrics and Methods for Protecting Record-level and Relational Data
TC:大型:协作研究:实用隐私:保护记录级和关系数据的指标和方法
  • 批准号:
    1012593
  • 财政年份:
    2010
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Continuing Grant
CDI-Type II: Collaborative Research: Integrating Statistical and Computational Approaches to Privacy
CDI-类型 II:协作研究:整合隐私统计和计算方法
  • 批准号:
    0941226
  • 财政年份:
    2010
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Standard Grant
Joint NSF-Census-IRS Workshop on synthetic data and confidentiality protection, July 2009 Washington, DC
NSF-人口普查-IRS 合成数据和机密性保护联合研讨会,2009 年 7 月华盛顿特区
  • 批准号:
    0922494
  • 财政年份:
    2009
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Standard Grant
ITR-(ECS+ASE)-(dmc+int): Info Tech Challenges for Secure Access to Confidential Social Science Data
ITR-(ECS ASE)-(dmc int):安全访问机密社会科学数据的信息技术挑战
  • 批准号:
    0427889
  • 财政年份:
    2004
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Standard Grant
EITM: Developing the Tools to Understand Human Performance: An Empirical Infrastructure to Foster Research Collaboration
EITM:开发了解人类绩效的工具:促进研究合作的实证基础设施
  • 批准号:
    0339191
  • 财政年份:
    2004
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Standard Grant
Individual and Firm Heterogeneity in Labor Markets: Studies of Matched Employee-Employer Data
劳动力市场中的个人和企业异质性:匹配雇员-雇主数据的研究
  • 批准号:
    9618111
  • 财政年份:
    1997
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Continuing Grant
Employment and Compensation Policies: Studies of American and French Labor Markets Using Matched Employer-Employee Data
就业和薪酬政策:使用匹配的雇主-雇员数据对美国和法国劳动力市场进行研究
  • 批准号:
    9321053
  • 财政年份:
    1994
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Continuing Grant
Compensation System Design, Employment and Firm Performance:An Analyis of French Microdata and a Comparison to the U.S.A
薪酬体系设计、就业与企业绩效:法国微观数据分析及与美国的比较
  • 批准号:
    9111186
  • 财政年份:
    1991
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Continuing grant
The Effects of Collective Bargaining and Threats of Unionization on Firm Investment Policy, Return on Investment, and Stock Valuations
集体谈判和工会威胁对公司投资政策、投资回报和股票估值的影响
  • 批准号:
    8813847
  • 财政年份:
    1988
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Continuing Grant
Improving the Scientific Research Utility of Labor Force Gross Flow Data
提高劳动力总流量数据的科研效用
  • 批准号:
    8513700
  • 财政年份:
    1986
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Standard Grant

相似海外基金

Workplace mental health: Aligning employer incentives with societal benefit
工作场所心理健康:使雇主激励措施与社会效益相一致
  • 批准号:
    DE240100535
  • 财政年份:
    2024
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Discovery Early Career Researcher Award
Increasing Employer Inclusivity by Investigating Motivation to Participate in Geoscience Disability Communities of Transformation
通过调查参与地球科学残疾社区转型的动机来提高雇主的包容性
  • 批准号:
    2321195
  • 财政年份:
    2023
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Standard Grant
Interactive assistance via eHealth for small and medium-sized enterprises' employer and health care manager teams on tobacco control
通过电子健康为中小企业雇主和医疗保健经理团队提供控烟互动协助
  • 批准号:
    22H03326
  • 财政年份:
    2022
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Putting Telehealth to the Test: An Evaluation of the Use of Telehealth to Increase the Population-Level Impact of an Employer-Based Diabetes Prevention Program
测试远程医疗:评估使用远程医疗来增加基于雇主的糖尿病预防计划的人群影响
  • 批准号:
    10456167
  • 财政年份:
    2022
  • 资助金额:
    $ 492.52万
  • 项目类别:
Putting Telehealth to the Test: An Evaluation of the Use of Telehealth to Increase the Population-Level Impact of an Employer-Based Diabetes Prevention Program
测试远程医疗:评估使用远程医疗来增加基于雇主的糖尿病预防计划的人群影响
  • 批准号:
    10632758
  • 财政年份:
    2022
  • 资助金额:
    $ 492.52万
  • 项目类别:
Putting Telehealth to the Test: An Evaluation of the Use of Telehealth to Increase the Population-Level Impact of an Employer-Based Diabetes Prevention Program
测试远程医疗:评估使用远程医疗来增加基于雇主的糖尿病预防计划的人群影响
  • 批准号:
    10669641
  • 财政年份:
    2022
  • 资助金额:
    $ 492.52万
  • 项目类别:
Putting Telehealth to the Test: An Evaluation of the Use of Telehealth to Increase the Population-Level Impact of an Employer-Based Diabetes Prevention Program
测试远程医疗:评估使用远程医疗来增加基于雇主的糖尿病预防计划的人群影响
  • 批准号:
    10597811
  • 财政年份:
    2022
  • 资助金额:
    $ 492.52万
  • 项目类别:
Collaborative Research: A Data-Driven Employer-Academia Partnership for Continual Computing Curricular Change
协作研究:数据驱动的雇主-学术界合作伙伴关系,以实现持续的计算课程变革
  • 批准号:
    2111435
  • 财政年份:
    2021
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Continuing Grant
Employer and Employee Behaviors, Experiences, and Perceptions of the COVID-19 Pandemic
雇主和雇员对 COVID-19 大流行的行为、经历和看法
  • 批准号:
    2116949
  • 财政年份:
    2021
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Standard Grant
Collaborative Research: A Data-Driven Employer-Academia Partnership for Continual Computing Curricular Change
协作研究:数据驱动的雇主-学术界合作伙伴关系,以实现持续的计算课程变革
  • 批准号:
    2110788
  • 财政年份:
    2021
  • 资助金额:
    $ 492.52万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了