Utilizing a nanoantenna for ultrafast spectroscopy of a single semiconductor nanocrystal

利用纳米天线对单个半导体纳米晶体进行超快光谱分析

基本信息

项目摘要

Semiconductor nanostructures show fascinating optical properties. The strong confinement of the electrons leads to large quantization effects. Colloidal nanocrystals find applications in diverse fields such as photovoltaics and quantum optics. For a detailed understanding of the photophysics we need optical spectroscopy on the level of single nanocrystals, as otherwise the ensemble average will blur many aspects. Linear spectroscopy of a single colloid is a well established technique, but the ultrafast dynamics of charge separation can only be obtained by nonlinear spectroscopy. However, for a single colloid ultrafast spectroscopy is an impossible task up to date, due to the small interaction cross sections for nonlinear effects. Here, I propose to employ an optical nanoantenna to enhance the light-matter interaction. As we have shown for the transient absorption of a single metal nanoparticle, already a simple plasmonic antenna can enhance the nonlinear response by a factor of 10. In the present project we want to build on this. For the first time, nonlinear spectroscopy of single nanocrystal will become possible due to antenna enhancement. This will allow us to investigate electron dynamics shortly after excitation which is responsible for charge transfer in photovoltaics and the coherent operation of the nanocrystals in a quantum bit.
半导体纳米结构具有迷人的光学特性。电子的强约束导致了大的量子化效应。胶体纳米晶体在光伏和量子光学等多个领域都有应用。为了详细了解光物理,我们需要单纳米晶体水平上的光谱学,否则系综平均将模糊许多方面。单一胶体的线性光谱是一种成熟的技术,但电荷分离的超快动力学只能通过非线性光谱来获得。然而,由于非线性效应的相互作用截面小,对单个胶体进行超快光谱分析是目前不可能完成的任务。在这里,我建议使用光学纳米天线来增强光-物质相互作用。正如我们所展示的单个金属纳米颗粒的瞬态吸收,一个简单的等离子体天线已经可以将非线性响应提高10倍。在目前的项目中,我们希望以此为基础。由于天线的增强,单纳米晶体的非线性光谱将首次成为可能。这将使我们能够研究激发后不久的电子动力学,它负责光伏电池中的电荷转移和量子比特中纳米晶体的相干操作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Markus Lippitz其他文献

Professor Dr. Markus Lippitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Markus Lippitz', 18)}}的其他基金

Controlled excitation of quantum emitters by nonlinear plasmonic nearfields
通过非线性等离子体近场控制量子发射器的激发
  • 批准号:
    415999345
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultrafast spectroscopy of coupled quantum dots: quantum dot - particle plasmon and quantum dot - quantum dot coupling
耦合量子点的超快光谱:量子点-粒子等离子体和量子点-量子点耦合
  • 批准号:
    111000798
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Units
Nonlinear spectroscopy of a single nanoobject via a plasmonic waveguide
通过等离子体波导的单个纳米物体的非线性光谱
  • 批准号:
    524294906
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

RII Track-4: The Integration of Plasmonic Nanoantenna and Super-hydrophobic Surface for Ultrasensitive Fluorescence CRISPR Biosensing
RII Track-4:等离子体纳米天线和超疏水表面的集成用于超灵敏荧光 CRISPR 生物传感
  • 批准号:
    2132195
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Composite Avalanche Nanoantenna Room-Temperature Infrared Photodetectors (CANTRIP)
复合雪崩纳米天线室温红外光电探测器 (CANTRIP)
  • 批准号:
    2120568
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Engineer Light-Matter Interactions: From Weak to Strong Coupling Regime
工程师光与物质相互作用:从弱耦合到强耦合机制
  • 批准号:
    21K13868
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Composite Avalanche Nanoantenna Room-Temperature Infrared Photodetectors (CANTRIP)
合作研究:复合雪崩纳米天线室温红外光电探测器(CANTRIP)
  • 批准号:
    2120581
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Hybrid nanowire-nanoantenna infrared photodetectors
混合纳米线-纳米天线红外光电探测器
  • 批准号:
    DE190100413
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Plasmofluidic Nanoantenna-Superlens Biosensor for Single-Cell Functional Immunophenotyping
合作研究:用于单细胞功能免疫表型分析的质流控纳米天线-超级透镜生物传感器
  • 批准号:
    1701322
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Plasmofluidic Nanoantenna-Superlens Biosensor for Single-Cell Functional Immunophenotyping
合作研究:用于单细胞功能免疫表型分析的质流控纳米天线-超级透镜生物传感器
  • 批准号:
    1701363
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel photon control by moire superlattices and plasmonic metasurfaces
通过莫尔超晶格和等离子体超表面控制新型光子
  • 批准号:
    16K21601
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: Plasmonic Nanoantenna Electrode Arrays (NEAs) for Massively Multiplexed Identification of Stem-Cell Derived Cardiac Cells in Regenerative Therapies
合作研究:等离激元纳米天线电极阵列(NEA)用于再生治疗中干细胞来源的心肌细胞的大规模多重识别
  • 批准号:
    1611290
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Vertically aligned metal-organic hybrid nanoantenna for enhanced plasmonic photovoltaic and LED technologies
用于增强等离子体光伏和 LED 技术的垂直排列金属有机混合纳米天线
  • 批准号:
    475531-2015
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了