Composite Avalanche Nanoantenna Room-Temperature Infrared Photodetectors (CANTRIP)

复合雪崩纳米天线室温红外光电探测器 (CANTRIP)

基本信息

  • 批准号:
    2120568
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Many of us have become familiar with infrared (IR) imaging during the COVID-19 pandemic as a method to rapidly screen for people with fevers. However, IR imaging is also useful for other medical diagnosis, astronomy, law enforcement, military vision systems, inspection of mechanical/electrical components, secure communications, energy/environmental assessments, and many more situations. Despite these broad applications, IR imagers are expensive and generally require internal cooling systems. This work would develop a new class of thermal imager with the potential to be cheaper, more energy efficient, and operable with additional functionalities not presently available using existing technology. A breakthrough in this area will enable thermal imaging to become part of everyday life. In this work, the investigators will create hybrid detectors that integrate nanoscale antennas with photodetectors, which should enable increased functionality while also reducing system cost and complexity compared to the present state of the art systems. Both investigators have a long history of outreach of integrating their research with the broader community; and through this work, they plan to initiate new outreach efforts about the interaction of light, materials, and structures to show students of a variety of ages and backgrounds the excitement of “viewing the invisible.”This research aims to develop a fundamentally new mechanism for room temperature, long wavelength infrared (LWIR) photodetection using a combination of nanoantenna arrays and avalanche diode technologies. We will advance the state of photodetection by combining: a) active photonic design, b) antenna array theory, and c) customized semiconductor materials/devices. With later development (e.g. microlens arrays for achieve high fill factors) these photodetectors could become the new dominant paradigm replacing the existing, costly imagers. Our solution combines photodetection technologies and anisotropic nanoantenna designs to create a first-in-class, hybrid photodetection system. This novel combination relies on the theoretical foundation of active frequency selective systems and those of highly sensitive avalanche photodiodes. To achieve this foundation, the challenges associated with a hybrid semiconductor/metallic nanoantenna modeling must be investigated as, with only a few exceptions, the need to integrate optical responses with semiconductor carrier mobility has been a largely overlooked area. Although, many of the associated interactions have been successfully modeled independently, there have been significant hurdles in producing full-wave simulation which integrate electromagnetic excitations with semiconductor carrier mobilities and charge distributions. Our models will incorporate localized carrier injection and transport modeling to develop an avalanche diode growth profile including semiconductor choice, bandgap, doping profile, and layer thickness. The interplay of these parameters is fundamentally different than traditional photodiode material systems will be analyzed to understand the nanostructure/semiconductor interactions at a fundamental. Since the choice of material system is an important one for this project to succeed, the project will consider GaAs based avalanche diodes, as well as InP and/or GaP due to the versatility of the III-V heterojunction materials system enabling adaptability as new challenges arise. The molecular beam epitaxy systems employed in this work are capable of intermixing any of the common III-V elements (Al, Ga, In, Tl and P, As, Sb, Bi) to achieve a wide range of potential material properties. As such, parameters such as the localized carrier injection can be adjusted using semiconductor growth profiles and doping concentrations to achieve the desired induced photocurrent. Through the thorough analysis of modeling, anisotropic antenna design, and unique semiconductor growth profiles, this work provides a novel path to understanding a revolutionary electromagnetic imaging architecture. Specifically, we are using an IR signal to excite an anisotropic nanoantenna which will stimulate the avalanche process in an integrated semiconductor junction. The resulting room-temperature photodetectors will minimize thermal noise, increase functionality, and be a first-in-class-innovation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在COVID-19大流行期间,我们中的许多人都熟悉红外(IR)成像,这是一种快速筛查发烧患者的方法。然而,红外成像对于其他医疗诊断、天文学、执法、军事视觉系统、机械/电气部件检查、安全通信、能源/环境评估等情况也很有用。尽管有这些广泛的应用,红外成像仪是昂贵的,通常需要内部冷却系统。这项工作将开发一种新的热成像仪,具有更便宜,更节能的潜力,并具有使用现有技术目前无法获得的额外功能。这一领域的突破将使热成像成为日常生活的一部分。在这项工作中,研究人员将创建将纳米级天线与光电探测器集成在一起的混合探测器,与现有技术系统相比,这将增加功能,同时降低系统成本和复杂性。两位研究人员都有将他们的研究与更广泛的社区相结合的长期推广历史;通过这项工作,他们计划发起关于光,材料和结构相互作用的新的推广工作,向不同年龄和背景的学生展示“观看无形的东西”的兴奋。这项研究的目的是开发一种全新的机制,室温下,长波长红外(LWIR)光电探测使用纳米天线阵列和雪崩二极管技术的组合。 我们将通过结合:a)有源光子设计,B)天线阵列理论和c)定制半导体材料/器件来推进光电探测的状态。随着后来的发展(例如用于实现高填充因子的微透镜阵列),这些光电探测器可能成为取代现有的昂贵成像器的新的主导范例。我们的解决方案结合了光电探测技术和各向异性纳米天线设计,创造了一流的混合光电探测系统。 这种新颖的组合依赖于有源频率选择系统和高灵敏度雪崩光电二极管的理论基础。 为了实现这一基础,必须研究与混合半导体/金属纳米天线建模相关的挑战,因为除了少数例外,将光学响应与半导体载流子迁移率相结合的需求一直是一个很大程度上被忽视的领域。 虽然,许多相关的相互作用已经成功地独立建模,有显着的障碍,在生产全波模拟集成电磁激励与半导体载流子迁移率和电荷分布。 我们的模型将结合本地化的载流子注入和传输建模,开发雪崩二极管的生长曲线,包括半导体的选择,带隙,掺杂分布和层厚度。这些参数的相互作用与传统的光电二极管材料系统有着根本的不同,将对其进行分析,以从根本上理解纳米结构/半导体相互作用。由于材料系统的选择是该项目成功的重要因素,因此该项目将考虑基于GaAs的雪崩二极管以及InP和/或GaP,因为III-V异质结材料系统的多功能性使其能够适应新的挑战。在这项工作中采用的分子束外延系统能够混合任何常见的III-V族元素(Al,Ga,In,Tl和P,As,Sb,Bi),以实现广泛的潜在材料特性。因此,可以使用半导体生长曲线和掺杂浓度来调节诸如局部载流子注入的参数,以实现期望的感应光电流。通过对建模、各向异性天线设计和独特的半导体生长曲线的深入分析,这项工作为理解革命性的电磁成像架构提供了一条新的途径。具体来说,我们使用IR信号来激发各向异性纳米天线,这将刺激集成半导体结中的雪崩过程。由此产生的室温光电探测器将最大限度地减少热噪声,增加功能,并成为一流的创新。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Vandervelde其他文献

Thomas Vandervelde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Vandervelde', 18)}}的其他基金

Selective-Spectrum Thermophotovoltaics for Primary Power Generation and Energy Harvesting
用于初级发电和能量收集的选择性光谱热光伏
  • 批准号:
    1806311
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Creating Future Female Engineering Leaders
培养未来的女性工程领导者
  • 批准号:
    1444926
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Photonic Materials Molecular Beam Epitaxy System
MRI:获取光子材料分子束外延系统
  • 批准号:
    1337783
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Metamaterial-Enhanced Thermal Energy Harvesters
职业:超材料增强型热能收集器
  • 批准号:
    1055203
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Short-wave Infrared Single Photon Detection With Linear Mode Avalanche Photodiode
使用线性模式雪崩光电二极管进行短波红外单光子检测
  • 批准号:
    EP/Y020855/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
  • 批准号:
    2227842
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Single Photon Detection using AlGaAsSb Avalanche Photodiodes
使用 AlGaAsSb 雪崩光电二极管进行单光子检测
  • 批准号:
    2885893
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Collaborative Research: Solid-State Selenium Photo-multiplier with a High-K Dielectric Blocking Layer for High, Noise-free Avalanche Gain
合作研究:具有高 K 电介质阻挡层的固态硒光电倍增器,可实现高、无噪声的雪崩增益
  • 批准号:
    2323398
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Applications of wavelength-resolved silicon photonic avalanche photodiodes
波长分辨硅光子雪崩光电二极管的应用
  • 批准号:
    573395-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
Why do volcanoes collapse? Analysis of matrix facies of debris avalanche deposits and prediction of future collapses
火山为什么会塌陷?
  • 批准号:
    22H01306
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Extended Wavelength Ge-on-Si Single-photon Avalanche Diode Detectors
扩展波长硅基硅单光子雪崩二极管探测器
  • 批准号:
    2906463
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Sensitvity leap for far ultraviolet single photon avalanche diodes
远紫外单光子雪崩二极管的灵敏度飞跃
  • 批准号:
    RGPIN-2017-06409
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
AIR SPAD - AlGaAsSb Infrared Single Photon Avalanche Diodes
AIR SPAD - AlGaAsSb 红外单光子雪崩二极管
  • 批准号:
    10031973
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Sensitvity leap for far ultraviolet single photon avalanche diodes
远紫外单光子雪崩二极管的灵敏度飞跃
  • 批准号:
    RGPIN-2017-06409
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了