Multiresolution- and Topology-Based Visualization of Large Scientific Data Sets in Parallel and Distributed Computing Environments

并行和分布式计算环境中大型科学数据集的多分辨率和基于拓扑的可视化

基本信息

  • 批准号:
    9982251
  • 负责人:
  • 金额:
    $ 76.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-01 至 2005-05-31
  • 项目状态:
    已结题

项目摘要

Our ability to generate scientific data is growing much faster than our ability to understand it. The rapid advances in computing and imaging technology allow scientists to generate very large data sets for which appropriate means for in-depth analysis and understanding do not yet exist. Computational techniques allow the simulation of extremely complicated physical phenomena at ever increasing spatial and temporal resolutions, but data analysis technology for this type of data is still in its infancy. Today, one must choose one of these alternatives: One can either ignore a substantial fraction of a massive scientific data set and only analyze portions of it, or one can invest a significant amount of person-time to analyze and visualize a massive data set in great detail. Neither alternative is desirable. This project will develop the technology needed to address this issue, and will test the new techniques on data from Lawrence Livermore National Laboratory and NASA Ames Research Center.Technically, the project will take a 5-prong approach to the large data visualization problem. First, it will extend existing hierarchical schemes - i.e., schemes approximating a data set at multiple resolution levels - to time-varying multi-valued/multi-dimensional data. Second, it will improve topology-based approaches - i.e., approaches that extract qualitatively interesting characteristics (such as zeros, extreme, and discontinuities in scalar and vector fields) from large data sets. Third, it will develop parallel and distributed algorithms for efficient computation of hierarchical data representations, fast extraction of topology, and optimizing compute-intensive visualization processes. Fourth, it will devise interactive visualization techniques for (immersive) visualization environments that support view-dependent and user-specified, adaptive level-of-detail rendering. Fifth, it will create a simple metadata database system allow sharing of a user's experience, i.e., previously chosen rendering parameters leading to "good imagery" or entire rendering processes.
我们生成科学数据的能力比我们理解数据的能力增长得快得多。计算机和成像技术的快速发展使科学家能够生成非常大的数据集,而对这些数据集进行深入分析和理解的适当手段尚不存在。计算技术允许以不断增加的空间和时间分辨率模拟极其复杂的物理现象,但这类数据的数据分析技术仍处于起步阶段。今天,人们必须在这些选择中做出选择:人们可以忽略大量科学数据集的很大一部分,只分析其中的一部分,或者可以投入大量的人力时间来详细分析和可视化大量数据集。两种选择都不可取。该项目将开发解决这一问题所需的技术,并将在劳伦斯利弗莫尔国家实验室和美国宇航局艾姆斯研究中心的数据上测试新技术。从技术上讲,该项目将采用5个方面的方法来解决大数据可视化问题。首先,它将扩展现有的分层方案——即近似于多个分辨率水平的数据集的方案——到时变的多值/多维数据。其次,它将改进基于拓扑的方法——即从大型数据集中提取质量上有趣的特征(如标量和向量场中的零、极值和不连续)的方法。第三,它将开发并行和分布式算法,以有效地计算分层数据表示,快速提取拓扑,并优化计算密集型可视化过程。第四,它将为(沉浸式)可视化环境设计交互式可视化技术,支持依赖于视图和用户指定的自适应细节级渲染。第五,它将创建一个简单的元数据数据库系统,允许共享用户体验,即先前选择的渲染参数导致“好图像”或整个渲染过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernd Hamann其他文献

421: Identification of the Neurotrophin Midkine as a Putative Progression Factor in Androgen-Independent Prostate Cancer
  • DOI:
    10.1016/s0022-5347(18)34674-3
  • 发表时间:
    2005-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Clifford G. Tepper;Nameetah Shah;Ruth L. Vinall;Lars Linsen;Xu-Bao Shi;Jeffrey P. Gregg;Bernd Hamann;Ralph W. deVere White
  • 通讯作者:
    Ralph W. deVere White
Wavelet-Based Multiresolution with
  • DOI:
    10.1007/s00607-003-0052-0
  • 发表时间:
    2004-03-08
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Lars Linsen;Bernd Hamann;Kenneth I. Joy;Valerio Pascucci;Mark A. Duchaineau
  • 通讯作者:
    Mark A. Duchaineau
RADPLEURA: A RADIOMICS-BASED FRAMEWORK FOR LUNG PLEURA CLASSIFICATION IN HISTOLOGY IMAGES FROM INTERSTITIAL LUNG DISEASES
RADPLEURA:基于放射组学的间质性肺疾病组织学图像中肺胸膜分类框架
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. C. Linares;Ivar Vargas Belizario;S. Batah;Bernd Hamann;Alexandre Todorovic;P.M. Azevedo;Agma J. M. Traina
  • 通讯作者:
    Agma J. M. Traina
Noise investigation in manufacturing systems: An acoustic simulation and virtual reality enhanced method
  • DOI:
    10.1016/j.cirpj.2012.09.010
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jan C. Aurich;Xiang Yang;Simon Schröder;Martin Hering-Bertram;Tim Biedert;Hans Hagen;Bernd Hamann
  • 通讯作者:
    Bernd Hamann
Visualizing White Matter Fiber Tracts with Optimally Fitted Curved Dissection Surfaces
通过最佳拟合的弯曲解剖表面可视化白质纤维束

Bernd Hamann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernd Hamann', 18)}}的其他基金

Topology-based Methods for Analysis and Visualization of Noisy Data
基于拓扑的噪声数据分析和可视化方法
  • 批准号:
    0702817
  • 财政年份:
    2007
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Standard Grant
WORKSHOP: Lake Tahoe Workshop on Hierarchical Visualization Methods - Oct. 15-17, 2000
研讨会:太浩湖分层可视化方法研讨会 - 2000 年 10 月 15-17 日
  • 批准号:
    0084843
  • 财政年份:
    2000
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Standard Grant
Career: A Proposal Regarding the Unification of Data Reduction and Multiresolution Methods for Use in Scientific Visualization and the Education in Scientific Visualization
职业:关于科学可视化中使用的数据缩减和多分辨率方法的统一以及科学可视化教育的提案
  • 批准号:
    9624034
  • 财政年份:
    1996
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Continuing Grant
RIA: Data Reduction and New Visualization Techniques for Three-Dimensional Data Sets
RIA:三维数据集的数据缩减和新可视化技术
  • 批准号:
    9696024
  • 财政年份:
    1995
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Standard Grant
RIA: Data Reduction and New Visualization Techniques for Three-Dimensional Data Sets
RIA:三维数据集的数据缩减和新可视化技术
  • 批准号:
    9210439
  • 财政年份:
    1992
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Standard Grant

相似海外基金

Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology-based tumor analysis for medical images
基于拓扑的医学图像肿瘤分析
  • 批准号:
    10653350
  • 财政年份:
    2023
  • 资助金额:
    $ 76.96万
  • 项目类别:
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
  • 批准号:
    10884760
  • 财政年份:
    2023
  • 资助金额:
    $ 76.96万
  • 项目类别:
Towards High-Performance and Carbon-Negative Civil Structures with Renewable Bio-Based Materials: A Topology Optimization Approach
利用可再生生物基材料实现高性能和负碳土木结构:拓扑优化方法
  • 批准号:
    2245251
  • 财政年份:
    2023
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Standard Grant
Development of Innovative Materials Based on the Chemistry of Polymer Topology Editing
基于高分子拓扑编辑化学的创新材料开发
  • 批准号:
    23K17337
  • 财政年份:
    2023
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
CAREER: A Measure Theoretic Framework for Topology-Based Visualization
职业生涯:基于拓扑的可视化的测量理论框架
  • 批准号:
    2145499
  • 财政年份:
    2022
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Standard Grant
Artificial intelligence enhanced cancer cell classification based organelle morphology and topology
人工智能增强基于细胞器形态和拓扑的癌细胞分类
  • 批准号:
    10528867
  • 财政年份:
    2022
  • 资助金额:
    $ 76.96万
  • 项目类别:
Exploration of electromagnetic phenomena based on dynamics of topology change
基于拓扑变化动力学的电磁现象探索
  • 批准号:
    22H01164
  • 财政年份:
    2022
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Image analysis of topology changes for laser-based soft material processing
基于激光的软材料加工拓扑变化的图像分析
  • 批准号:
    RGPIN-2020-05833
  • 财政年份:
    2022
  • 资助金额:
    $ 76.96万
  • 项目类别:
    Discovery Grants Program - Individual
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
  • 批准号:
    10884759
  • 财政年份:
    2022
  • 资助金额:
    $ 76.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了