Artificial intelligence enhanced cancer cell classification based organelle morphology and topology
人工智能增强基于细胞器形态和拓扑的癌细胞分类
基本信息
- 批准号:10528867
- 负责人:
- 金额:$ 23.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlgorithmsArtificial IntelligenceBiologyBrainBreast Cancer CellBreast Cancer ModelBreast Cancer cell lineCancer BiologyCell Culture TechniquesCell LineCellsCellular biologyClassificationComputer softwareConsumptionCytometryDataDevelopmentDiscriminant AnalysisDiseaseDisseminated Malignant NeoplasmGenomicsHeterogeneityHumanImageIn VitroIndividualInformaticsLocationLungMDA MB 231Machine LearningMalignant NeoplasmsMeasuresMetastatic breast cancerMethodologyMethodsMorphologyNeoplasm MetastasisNeural Network SimulationOrganOrganellesPatientsPerformancePhenotypePopulationPrimary NeoplasmProteomicsResearch PersonnelSamplingSpatial DistributionSupervisionSystemTimeTissuesVisualanalysis pipelineanticancer researchartificial intelligence algorithmbasecancer cellcancer sitecancer typeclassification algorithmconvolutional neural networkdeep learningdeep learning algorithmdeep learning modeldiagnostic valuefeature extractioninnovationlearning networklearning strategymachine learning algorithmmachine learning modelmachine learning pipelinemalignant breast neoplasmmicroscopic imagingmultiplexed imagingneoplastic cellnovelprognostic valueprotein biomarkersrandom forestsuccesssupervised learningtooltranscriptomicstumortumor xenograft
项目摘要
ABSTRACT
Breast cancer is a highly heterogenous disease, both phenotypically and genetically. The quantity and
subcellular location of cancer protein biomarkers are used to classify breast cancer types. Transcriptomics,
multiplexed imaging, or mass cytometry have been used to classify breast tumor cell heterogeneity with varying
success. Although genomics and proteomics have been successful in the identification of tumor cell populations
involved in metastatic progression, the ability to determine whether patient tumors contain metastatic
subpopulations is still lacking. Recently, organelle morphology and function has been used as a direct readout
of the functional phenotypic state of an individual cancer cell. We propose to use the spatial context of organelles,
specifically their subcellular location and inter-organelle relationships (topology), to classify novel and distinct
metastatic cancer cell subpopulations. We developed an Organelle Topology-based Cell Classification Pipeline
(OTCCP) to quantify, for the first time, the topological features of subcellular organelles, defined as the distance
between each organelle object and all its neighbors within a cell. Under RFA-CA-21-013 (Development of
Innovative Informatics Methods and Algorithms for Cancer Research and Management), we will adapt or develop
Machine learning and Deep Learning methodologies to accelerate and automate OTCCP-based organelle-
based topology cancer cell classification to identify subpopulations of metastatic cells within heterogeneous
primary tumors with potential diagnostic and prognostic value. This approach will also have major impact as a
discovery tool to advance our understanding of cancer cell biology on a subcellular level.
摘要
乳腺癌是一种高度异质性的疾病,无论是表型和遗传。数量和
癌症蛋白质生物标志物的亚细胞定位用于对乳腺癌类型进行分类。转录组学,
多重成像或质谱细胞计数已被用于对乳腺肿瘤细胞异质性进行分类,
成功虽然基因组学和蛋白质组学在肿瘤细胞群的鉴定方面取得了成功
参与转移性进展,确定患者肿瘤是否含有转移性
亚群仍然缺乏。最近,细胞器的形态和功能已被用作直接读出
单个癌细胞的功能表型状态。我们建议利用细胞器的空间背景,
特别是它们亚细胞位置和细胞器间关系(拓扑学),以将新的和不同的
转移性癌细胞亚群。我们开发了一个基于细胞器拓扑结构的细胞分类流水线
(OTCCP)首次量化亚细胞器的拓扑特征,定义为距离
每个细胞器对象和它在细胞内的所有邻居之间。根据RFA-CA-21-013(
创新的信息学方法和算法癌症研究和管理),我们将适应或开发
机器学习和深度学习方法可加速和自动化基于OTCCP的细胞器-
基于拓扑学的癌细胞分类,以鉴定异质性肿瘤中的转移性细胞亚群,
具有潜在诊断和预后价值的原发性肿瘤。这种方法也将产生重大影响,
发现工具,以促进我们对癌细胞生物学在亚细胞水平上的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margarida Barroso其他文献
Margarida Barroso的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margarida Barroso', 18)}}的其他基金
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
$ 23.02万 - 项目类别:
IMAT-ITCR Collaboration: Artificial intelligence enhanced breast cancer dormancy cell classification-based organelle-morphology and topology
IMAT-ITCR 合作:人工智能增强乳腺癌休眠细胞分类的细胞器形态和拓扑
- 批准号:
10884759 - 财政年份:2022
- 资助金额:
$ 23.02万 - 项目类别:
In vivo Macroscopic Fluorescence Lifetime Molecular Optical Imaging
体内宏观荧光寿命分子光学成像
- 批准号:
10474962 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Endosome-mitochondria interactions in breast cancer cells
乳腺癌细胞中内体-线粒体相互作用
- 批准号:
10328547 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
In vivo Macroscopic Fluorescence Lifetime Molecular Optical Imaging
体内宏观荧光寿命分子光学成像
- 批准号:
10277118 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
In vivo Macroscopic Fluorescence Lifetime Molecular Optical Imaging
体内宏观荧光寿命分子光学成像
- 批准号:
10621919 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Endosome-mitochondria interactions in breast cancer cells
乳腺癌细胞中内体-线粒体相互作用
- 批准号:
10547808 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Endosome-mitochondria interactions in breast cancer cells
乳腺癌细胞中内体-线粒体相互作用
- 批准号:
10083202 - 财政年份:2020
- 资助金额:
$ 23.02万 - 项目类别:
Photon-counting X-ray and Optical Tomography for Preclinical Cancer Research
用于临床前癌症研究的光子计数 X 射线和光学断层扫描
- 批准号:
10247629 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
Photon-counting X-ray and Optical Tomography for Preclinical Cancer Research
用于临床前癌症研究的光子计数 X 射线和光学断层扫描
- 批准号:
10017171 - 财政年份:2019
- 资助金额:
$ 23.02万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.02万 - 项目类别:
Research Grant














{{item.name}}会员




