Category Structure and Generative Thought

范畴结构与生成思维

基本信息

  • 批准号:
    9983424
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-15 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

The ability to generate useful new ideas underlies human accomplishment in technological, scientific, economic and artistic realms, and understanding how new ideas are formed has importance for all of those areas. The major objective of this research is to develop a theoretical account of the processes involved in novel idea generation, and the ways in which people's existing knowledge influences the form of the new ideas they generate.Previous research has shown that people often begin the process of developing new ideas by retrieving from memory fairly specific instances of known concepts to serve as starting points, and then patterning the novel idea after those instances, but much about this process remains unclear. Building on that earlier work and other research on the nature of human concepts, this new research seeks to provide a more coherent view of the process. It goes beyond the obvious point that new ideas are derived from existing ones to assess how the structure of people's existing concepts influences the structure of novel ideas they produce. Studies are designed to determine why some instances are more likely than others to be retrieved and used as starting points, the extent to which reliance on those instances constrains the originality of the newly formed ideas, the extent to which reliance on those instances is rigid versus flexible, and how situational factors influence what the person retrieves from memory as a starting point for the new idea.Predictions are based on the path-of-least-resistance model, which states that people will tend to rely on the specific instances that are most highly representative of a given category. Some studies will require participants to imagine novel entities from particular categories (e.g., fruit that might grow on another planet, toys that might be used by blind children). Base categories will include a variety of domains, including tools, toys, animals, fruit, vegetables, snack foods, rituals, and several others. Companion studies will use multiple measures to determine how representative different instances are within the base categories (e.g., how typical, frequent, and familiar specific instances of real Earth fruit are judged to be). The measure hypothesized to be most influential is how readily specific instances come to mind. The idea is that the category instances that come to mind most readily are the ones that will be most frequently retrieved as candidate starting points in formulating novel ideas. The rationale is that generating new ideas is cognitively demanding, and people tend to simplify the task by pursuing ideas that come to mind readily. In these studies, the originality and other properties of the imagined ideas will be assessed to determine the degree to which relying on such specific instances constrains the form of new ideas.Other studies will test the hypothesis that representativeness is flexible rather than fixed and that recent experiences will influence the particular instances that are retrieved and used in imagination. They will attempt to influence idea generation by giving people prior exposure to certain instances or by presenting key attributes of those instances. In other words, rather than just using the static structure of existing concepts to predict the form of novel ideas, the studies will attempt to manipulate the form of the novel ideas by way of the other factors present in the situation.
产生有用的新想法的能力是人类在技术、科学、经济和艺术领域成就的基础,理解新想法是如何形成的对所有这些领域都很重要。这项研究的主要目的是建立一个关于新想法产生过程的理论描述,以及人们现有的知识是如何影响他们产生新想法的形式的。以前的研究表明,人们通常通过从记忆中提取已知概念的相当具体的实例作为起点,然后在这些实例之后模式化新想法来开始开发新想法的过程,但关于这个过程的许多方面仍然不清楚。这项新研究在早期工作和对人类概念性质的其他研究的基础上,试图对这一过程提供更连贯的观点。它超越了新想法是从现有想法衍生出来的这一显而易见的观点,以评估人们现有概念的结构如何影响他们产生的新想法的结构。研究旨在确定为什么某些实例比其他实例更有可能被提取并用作起点,对这些实例的依赖在多大程度上限制了新形成的想法的原创性,对这些实例的依赖在多大程度上是僵硬的,而对这些实例的依赖是灵活的,以及情景因素如何影响人们从记忆中提取什么作为新概念的起点。预测基于最小阻力路径模型,该模型指出,人们倾向于依赖于最具代表性的特定实例。一些研究将要求参与者想象特定类别的新奇实体(例如,可能生长在另一个星球上的水果,可能被盲童使用的玩具)。基本类别将包括各种领域,包括工具、玩具、动物、水果、蔬菜、休闲食品、仪式和其他几个领域。配套研究将使用多种方法来确定不同实例在基本类别中的代表性(例如,真实地球水果的典型、频繁和熟悉的特定实例被判断为有多典型)。被认为最有影响力的衡量标准是,人们在脑海中浮现出具体事例的程度。这个想法是,最容易出现在脑海中的类别实例是那些在形成新想法时最频繁地作为候选起点被检索的类别实例。其基本原理是,产生新的想法对认知要求很高,人们倾向于通过追求容易出现的想法来简化任务。在这些研究中,将评估想象的想法的原创性和其他属性,以确定依赖这些特定实例对新概念形成的制约程度。其他研究将检验代表性是灵活的而不是固定的假设,以及最近的经历将影响在想象中提取和使用的特定实例。他们将试图通过让人们事先接触到某些实例或通过展示这些实例的关键属性来影响想法的产生。换句话说,这些研究并不是仅仅使用现有概念的静态结构来预测新奇思想的形式,而是试图通过情境中存在的其他因素来操纵新奇思想的形式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Ward其他文献

Oriented local entropies for expansive actions by commuting automorphisms
  • DOI:
    10.1007/bf02761107
  • 发表时间:
    1996-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Vijay Chothi;Graham Everest;Thomas Ward
  • 通讯作者:
    Thomas Ward
Batch sedimentation in an impulsively heated system
  • DOI:
    10.1016/j.petrol.2014.03.013
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ameya C. Joshi;Thomas Ward
  • 通讯作者:
    Thomas Ward
Ergodic Theory: Interactions with Combinatorics and Number Theory
遍历理论:与组合学和数论的相互作用
Co-designing technology to improve psychological therapy for psychosis: SloMo, a blended digital therapy for fear of harm from others
  • DOI:
    10.1016/j.schres.2024.11.004
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amy Hardy;Kathryn M. Taylor;Amy Grant;Louie Christie;Lucy Walsh;Thomas Gant;Rama Gheerawo;Anna Wojdecka;Adrian Westaway;Alexa Münch;Philippa Garety;Thomas Ward
  • 通讯作者:
    Thomas Ward
SARS-CoV-2 test sensitivity and duration of positivity in the UK during the 2023/2024 Winter: A prospective cohort study based on self-reported data
2023/2024年冬季英国新冠病毒(SARS-CoV - 2)检测敏感性及阳性持续时间:一项基于自我报告数据的前瞻性队列研究
  • DOI:
    10.1016/j.jinf.2025.106485
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Christopher E. Overton;Martyn Fyles;Jonathon Mellor;Robert S. Paton;Alexander M. Phillips;Alex Glaser;Andre Charlett;Thomas Ward
  • 通讯作者:
    Thomas Ward

Thomas Ward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Ward', 18)}}的其他基金

REU Site: Launching Aerospace's Underrepresented Students into the Next Chapter - Unmanned Aerial Systems (LAUNCH-UAS)
REU 网站:让航空航天领域代表性不足的学生进入下一章 - 无人机系统 (LAUNCH-UAS)
  • 批准号:
    1757393
  • 财政年份:
    2018
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Accelerated versus decelerated settling velocity of a drop
液滴的加速与减速沉降速度
  • 批准号:
    1262718
  • 财政年份:
    2012
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Accelerated versus decelerated settling velocity of a drop
液滴的加速与减速沉降速度
  • 批准号:
    1236316
  • 财政年份:
    2012
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Participation by US Cognitive Scientists in Cognitive Science Meeting
美国认知科学家参加认知科学会议
  • 批准号:
    0447025
  • 财政年份:
    2005
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
REU Site: Adhesion Science at Virginia Tech
REU 站点:弗吉尼亚理工大学的粘附科学
  • 批准号:
    0244141
  • 财政年份:
    2003
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
REU SITE: Adhesion Science at Virginia Tech
REU 站点:弗吉尼亚理工大学的粘附科学
  • 批准号:
    9820274
  • 财政年份:
    1999
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Enhanced Macromolecular Chemistry and Engineering in Undergraduate Education
加强本科教育中的高分子化学与工程
  • 批准号:
    9255409
  • 财政年份:
    1993
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
White House Liaison with Congress and Interest Groups American Political Science Association 1990
白宫与国会和利益团体的联络 美国政治学协会 1990
  • 批准号:
    9013914
  • 财政年份:
    1990
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Analytic and Holistic Modes of Learning Family-Resemblance Concepts
学习家族相似概念的分析和整体模式
  • 批准号:
    8608916
  • 财政年份:
    1986
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Computer-Based Process Control in Chemical Engineering
化学工程中基于计算机的过程控制
  • 批准号:
    8160910
  • 财政年份:
    1981
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant

相似海外基金

Regularized divergences and their gradient flows, generative modeling and structure-preserving learning.
正则化散度及其梯度流、生成建模和结构保持学习。
  • 批准号:
    2307115
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10705666
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10505034
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10799445
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
Building an AI for Data Science: Learning Statistical Structure Directly from Data through Structured Deep Generative Models
构建数据科学人工智能:通过结构化深度生成模型直接从数据中学习统计结构
  • 批准号:
    518716-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
  • 批准号:
    2110926
  • 财政年份:
    2020
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Building an AI for Data Science: Learning Statistical Structure Directly from Data through Structured Deep Generative Models
构建数据科学人工智能:通过结构化深度生成模型直接从数据中学习统计结构
  • 批准号:
    518716-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Building an AI for Data Science: Learning Statistical Structure Directly from Data through Structured Deep Generative Models
构建数据科学人工智能:通过结构化深度生成模型直接从数据中学习统计结构
  • 批准号:
    518716-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
  • 批准号:
    1907805
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Building an AI for Data Science: Learning Statistical Structure Directly from Data through Structured Deep Generative Models
构建数据科学人工智能:通过结构化深度生成模型直接从数据中学习统计结构
  • 批准号:
    518716-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 4万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了