Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
基本信息
- 批准号:10799445
- 负责人:
- 金额:$ 13.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-17 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAntibodiesAreaBindingBiotechnologyCXCR4 geneClinicalComputing MethodologiesData ScienceDevelopmentDiagnostic testsEngineeringEnvironmentEpitopesEvolutionFaceGoalsImageLibrariesMarketingMedicalMedical TechnologyMethodsModelingModernizationMolecularNeural Network SimulationPerformanceProtein EngineeringResearchResearch PersonnelRoleSamplingSignal TransductionSnake VenomsSpecificityStructureTechnologyTherapeuticantibody engineeringartificial neural networkcostdesigndetection platformgenerative adversarial networkimprovedneural networkprotein structureresponsetool
项目摘要
PROJECT SUMMARY/ABSTRACT
As a molecular detection platform, antibodies have growing importance in modern medical technology, ranging
from diagnostic tests, to imaging, to therapeutics. The current market size for antibodies and their related
products is estimated to be around $200 billion USD. The growing need for antibodies with customized specificity
provides a rich environment for engineering efforts. Computational protein design has seen rapid progress in
recent years. Many methods have been developed to address antibody engineering needs. Researchers have
hoped that, through modeling and design, the cost for antibody development and improvements can be reduced
and the pace for creating new targeting molecules can be expedited. In recent years, the experimental pipeline
has been streamlined, but even so, extensive libraries and screen campaigns are usually required to get an initial
binding signal. A major advancement would be to directly design a binder from scratch, providing a signal for
potential optimization by artificial evolution. Current computational methods, however, have not taken a leading
role due to a number of shortcomings with the current modeling approach. We have extensive expertise in protein
design and have pioneered the use of generative neural network models for protein structures in recent years.
We have observed several key advantages in neural network approaches over existing methods: namely, their
ability to make inferences, interpolate, incorporate topological information, and accelerate sampling. These
advantages can be developed independently or used in conjunction with existing methods, and they can
significantly boost the performance of protein design. This project aims at leveraging several new advances we
have developed to date to inspire new strategies in response to the challenges in antibody engineering, or AI-
based protein design in general. We will develop new tools and design pipelines for expanding the specificities
for multispecific antibodies and customizing epitope-specific antibodies (using snake venoms and CXCR4 as
targets). This project will deliver both computational methods and constructs that can be deployed in clinical
settings. The results from this research will be highly impactful.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Possu Huang其他文献
Possu Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Possu Huang', 18)}}的其他基金
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
- 批准号:
10705666 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
- 批准号:
10505034 - 财政年份:2022
- 资助金额:
$ 13.28万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 13.28万 - 项目类别:
Standard Grant














{{item.name}}会员




