Generative neural networks for structure-based antibody design

用于基于结构的抗体设计的生成神经网络

基本信息

  • 批准号:
    10505034
  • 负责人:
  • 金额:
    $ 41.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-17 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

PROGRAM SUMMARY/ABSTRACT As a molecular detection platform, antibodies have growing importance in modern medical technology, ranging from diagnostic tests, to imaging, to therapeutics. The current market size for antibodies and their related products is estimated to be around $200 billion USD. The growing need for antibodies with customized specificity provides a rich environment for engineering efforts. Computational protein design has seen rapid progress in recent years. Many methods have been developed to address antibody engineering needs. Researchers have hoped that, through modeling and design, the cost for antibody development and improvements can be reduced and the pace for creating new targeting molecules can be expedited. In recent years, the experimental pipeline has been streamlined, but even so, extensive libraries and screen campaigns are usually required to get an initial binding signal. A major advancement would be to directly design a binder from scratch, providing a signal for potential optimization by artificial evolution. Current computational methods, however, have not taken a leading role due to a number of shortcomings with the current modeling approach. We have extensive expertise in protein design and have pioneered the use of generative neural network models for protein structures in recent years. We have observed several key advantages in neural network approaches over existing methods: namely, their ability to make inferences, interpolate, incorporate topological information, and accelerate sampling. These advantages can be developed independently or used in conjunction with existing methods, and they can significantly boost the performance of protein design. This project aims at leveraging several new advances we have developed to date to inspire new strategies in response to the challenges in antibody engineering, or AI-based protein design in general. We will develop new tools and design pipelines for expanding the specificities for multi- specific antibodies and customizing epitope-specific antibodies (using snake venoms and CXCR4 as targets). This project will deliver both computational methods and constructs that can be deployed in clinical settings. The results from this research will be highly impactful.
节目摘要/摘要 抗体作为分子检测平台,在现代医学中发挥着越来越重要的作用 技术,从诊断测试到成像,再到治疗学。目前的市场规模 抗体及其相关产品估计价值约2000亿美元。不断增长的 对具有定制特异性的抗体的需求为工程工作提供了丰富的环境。 近年来,蛋白质计算设计取得了长足的进步。许多方法已经被 为满足抗体工程需求而开发。研究人员曾希望,通过 建模和设计,可以降低抗体开发和改进的成本,并 创造新的靶向分子的步伐可以加快。近年来,试验性的 流水线已经简化,但即便如此,广泛的库和屏幕宣传活动通常是 获得初始绑定信号所需的。一个主要的进步是直接设计一个活页夹 从零开始,通过人工进化为潜在的优化提供了信号。当前 然而,由于一些缺点,计算方法并没有占据主导地位。 使用当前的建模方法。我们在蛋白质设计方面拥有丰富的专业知识, 近年来,人们率先使用生成神经网络模型来研究蛋白质结构。我们 已经观察到神经网络方法相对于现有方法的几个关键优势: 也就是说,它们进行推理、内插、合并拓扑信息以及 加快采样速度。这些优势可以单独开发,也可以结合使用 与现有的方法相结合,它们可以显著提高蛋白质设计的性能。这 该项目旨在利用我们迄今开发的几个新进展来激发新的灵感 应对抗体工程或基于人工智能的蛋白质设计中的挑战的策略 将军。我们将开发新的工具和设计管道,以扩大多个 特异性抗体和定制表位特异性抗体(使用蛇毒和CXCR4 作为目标)。该项目将提供计算方法和构造,可以 部署在临床环境中。这项研究的结果将产生很大的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Possu Huang其他文献

Possu Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Possu Huang', 18)}}的其他基金

Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10705666
  • 财政年份:
    2022
  • 资助金额:
    $ 41.6万
  • 项目类别:
Generative neural networks for structure-based antibody design
用于基于结构的抗体设计的生成神经网络
  • 批准号:
    10799445
  • 财政年份:
    2022
  • 资助金额:
    $ 41.6万
  • 项目类别:

相似海外基金

REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
  • 批准号:
    2349771
  • 财政年份:
    2024
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
  • 批准号:
    23H00232
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
  • 批准号:
    23H01489
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
  • 批准号:
    2216835
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
  • 批准号:
    23H01882
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
  • 批准号:
    EP/X018385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
  • 批准号:
    10635210
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 41.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了