Asymptotic Reasoning: Explanation, Reduction, and Emergence

渐近推理:解释、归约和涌现

基本信息

项目摘要

99-83696 -- Robert W. Batterman (Ohio State University) "Asymptotic Reasoning: Explanation, Reduction, and Emergence"A form of reasoning involving mathematical asymptotics is employed in many different contexts in scientific investigations. This project examines "asymptotic reasoning" as applied mathematicians and physicists use it. In many instances, the mathematical investigation of equations in an asymptotic regime, which involves a kind of physically motivated simplification, can yield formulas describing the salient and dominant features of the phenomenon of interest. The project aims to illuminate the nature of this asymptotic "simplification" and to understand why it is often very fruitful. The project also argues that this special type of simplification results in a deep understanding and explanation, unavailable by other means, of the salient features of the phenomenon of interest. It is argued that the extant philosophical theories of explanation and understanding overlook this widespread form of reasoning. The research will result in new insights about the nature of scientific understanding, explanation, and emergence. It builds upon past investigations into the nature and importance of asymptotic limiting relations between theories. That earlier work focused on the fact that in certain asymptotic regimes between theories (for instance, the semiclassical regime "between" quantum and classical mechanics) salient structures emerge which play crucial explanatory roles. The current project focuses on the questions of why and how this asymptotic reasoning is as fruitful as it is.
99-83696 --罗伯特·W. Batterman(俄亥俄州州立大学)“渐近推理:解释、还原和涌现“一种涉及数学渐近的推理形式在科学研究中的许多不同背景下被采用。本项目研究应用数学家和物理学家使用的“渐近推理”。在许多情况下,在渐近状态下对方程的数学研究,涉及一种物理动机的简化,可以产生描述感兴趣现象的显着和主导特征的公式。该项目旨在阐明这种渐近“简化”的性质,并理解为什么它往往是非常富有成效的。该项目还认为,这种特殊类型的简化导致了对兴趣现象的显著特征的深刻理解和解释,这是其他手段无法实现的。有人认为,现存的解释和理解的哲学理论忽视了这种广泛的推理形式。这项研究将导致对科学理解,解释和出现的性质的新见解。它建立在过去的调查性质和重要性的渐近理论之间的限制关系。早期的工作集中在这样一个事实上,即在理论之间的某些渐近区域(例如,量子力学和经典力学之间的半经典区域),出现了起关键解释作用的突出结构。目前的项目集中在为什么和如何这种渐近推理是富有成效的,因为它是问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Batterman其他文献

Robert Batterman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Batterman', 18)}}的其他基金

Between Theories: The Limits of Theory
理论之间:理论的局限性
  • 批准号:
    9529052
  • 财政年份:
    1996
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Standard Grant
On the Relationship Between Classical and Quantum Mechanics: What Can We Learn from Semiclassical Mechanics?
论经典力学与量子力学的关系:我们能从半经典力学中学到什么?
  • 批准号:
    9211983
  • 财政年份:
    1992
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Standard Grant
Chaos, Quantization and the Correspondence Principle
混沌、量子化和对应原理
  • 批准号:
    9012010
  • 财政年份:
    1990
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Exploring the use of mechanistic reasoning in undergraduate physiology education
博士后奖学金:STEMEdIPRF:探索机械推理在本科生理学教育中的应用
  • 批准号:
    2327451
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
  • 批准号:
    2348490
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Standard Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
  • 批准号:
    2337529
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
  • 批准号:
    2402833
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
CAREER: Programming Abstractions and Formal Reasoning for IoT Application Development
职业:物联网应用程序开发的编程抽象和形式推理
  • 批准号:
    2340479
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341512
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341513
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
CRII: SaTC: A Contextual Integrity Approach for Privacy Reasoning Regarding Performance Tracking Technologies in US College Athletics
CRII:SaTC:美国大学体育运动成绩跟踪技术隐私推理的上下文完整性方法
  • 批准号:
    2348294
  • 财政年份:
    2024
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Standard Grant
SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
  • 批准号:
    2350186
  • 财政年份:
    2023
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了