SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
基本信息
- 批准号:2350186
- 负责人:
- 金额:$ 38.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Boolean networks, mostly represented as graphs, have emerged as an effective logical representation to model not only the computational processes but also several phenomena from science and engineering, such as genetic analysis, electronic design automation, formal verification, etc. However, Boolean networks used in modern science and engineering applications can be extremely large with complex structures, which makes them less practical for real-world applications. For example, Boolean networks for optimizing logic circuits can have billions of vertices and cannot be effectively handled using traditional algorithms. Recent years have seen a widespread application of machine-learning (ML) techniques to various problems over graphs, namely graph learning, which has been successfully applied to accelerate applications by exploiting graph features found in social-network prediction and drug analysis. This project aims to develop a systematic framework that leverages graph learning to reason about Boolean networks, including dataset design, learning-algorithm development, training models, system integration, and evaluation over various application domains. The framework will be implemented in an extensible platform that can be used for a variety of applications in science and engineering. This project will create unique education and outreach opportunities for both academic and industrial participants, which involve mentoring of graduate and undergraduate students, innovation in teaching with investigator’s new courses in electronic design and deep learning, and attracting and preparing high-quality researchers with diverse backgrounds.The team of researchers will develop a set of novel algorithms in graph fusion, graph coarsening and refinement, and graph neural networks, to achieve high-quality and scalable embeddings for reasoning about functional, high-level abstractions of billion-node Boolean networks. The methods in this project will sit between the classical symbolic techniques in formal methods and ML in order to benefit both research communities in many domains, such as verification and synthesis, bioinformatics, artificial intelligence, and security. Specifically, the investigator plans to leverage and advance ML in symbolic-reasoning tasks, such that it can perform truly scalable Boolean reasoning analogously to traditional symbolic-reasoning approaches. The developments of this project will focus on novel algorithms in graph fusion and neural network architectures, domain-specific compression algorithms, end-to-end system integration, and large-scale system-level parallelism. In addition, the framework will be evaluated in algorithmic design-space exploration, targeting Boolean satisfiability solving and Boolean optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
布尔网络,主要表示为图,已经成为一种有效的逻辑表示,不仅可以对计算过程进行建模,还可以对科学和工程中的几种现象进行建模,例如遗传分析,电子设计自动化,形式验证等。这使得它们对于现实世界的应用不太实用。 例如,用于优化逻辑电路的布尔网络可以具有数十亿个顶点,并且不能使用传统算法有效地处理。近年来,机器学习(ML)技术广泛应用于图上的各种问题,即图学习,它已成功地应用于通过利用社交网络预测和药物分析中发现的图特征来加速应用。该项目旨在开发一个系统框架,利用图学习来推理布尔网络,包括数据集设计,学习算法开发,训练模型,系统集成和各种应用领域的评估。该框架将在一个可扩展的平台上实现,可用于科学和工程领域的各种应用。该项目将为学术和工业参与者创造独特的教育和推广机会,其中包括指导研究生和本科生,创新电子设计和深度学习的研究员新课程的教学,以及吸引和培养具有不同背景的高素质研究人员。研究人员团队将开发一套新颖的算法,用于图融合,图粗化和细化,和图神经网络,以实现高质量和可扩展的嵌入,用于对十亿节点布尔网络的功能,高级抽象进行推理。该项目中的方法将介于形式方法和ML中的经典符号技术之间,以使许多领域的研究社区受益,例如验证和合成,生物信息学,人工智能和安全。具体来说,研究人员计划在符号推理任务中利用和推进ML,以便它可以执行类似于传统符号推理方法的真正可扩展的布尔推理。该项目的发展将集中在图融合和神经网络架构中的新算法,特定领域的压缩算法,端到端系统集成和大规模系统级并行。此外,该框架将在算法设计-空间探索方面进行评估,目标是布尔可满足性求解和布尔优化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cunxi Yu其他文献
Survey on Applications of Formal Methods in Reverse Engineering and Intellectual Property Protection
形式化方法在逆向工程和知识产权保护中的应用综述
- DOI:
10.1007/s41635-018-0044-3 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Keshavarz;Cunxi Yu;S. Ghandali;Xiaolin Xu;Daniel E. Holcomb - 通讯作者:
Daniel E. Holcomb
Dataless Quadratic Neural Networks for the Maximum Independent Set Problem
无数据二次神经网络求解最大独立集问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ismail R. Alkhouri;Cedric Le Denmat;Yingjie Li;Cunxi Yu;Jia Liu;Rongrong Wang;Alvaro Velasquez - 通讯作者:
Alvaro Velasquez
Reverse engineering of irreducible polynomials in GF(2m) arithmetic
GF(2m) 算法中不可约多项式的逆向工程
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Cunxi Yu;Daniel E. Holcomb;M. Ciesielski - 通讯作者:
M. Ciesielski
Logic Debugging of Arithmetic Circuits
算术电路的逻辑调试
- DOI:
10.1109/isvlsi.2015.16 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. Ghandali;Cunxi Yu;Duo Liu;W. Brown;M. Ciesielski - 通讯作者:
M. Ciesielski
FlowTune: Practical Multi-armed Bandits in Boolean Optimization
- DOI:
10.1145/3400302.3415615 - 发表时间:
2020-11 - 期刊:
- 影响因子:0
- 作者:
Cunxi Yu - 通讯作者:
Cunxi Yu
Cunxi Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cunxi Yu', 18)}}的其他基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2349461 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
- 批准号:
2349670 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Continuing Grant
FET: Small: LightRidge: End-to-end Agile Design for Diffractive Optical Neural Networks
FET:小型:LightRidge:衍射光神经网络的端到端敏捷设计
- 批准号:
2321404 - 财政年份:2023
- 资助金额:
$ 38.17万 - 项目类别:
Continuing Grant
CAREER: OneSense: One-Rule-for-All Combinatorial Boolean Synthesis via Reinforcement Learning
职业:OneSense:通过强化学习进行一刀切的组合布尔综合
- 批准号:
2047176 - 财政年份:2021
- 资助金额:
$ 38.17万 - 项目类别:
Continuing Grant
SHF: Small: Boosting Reasoning in Boolean Networks with Attributed Graph Learning
SHF:小:通过属性图学习增强布尔网络的推理
- 批准号:
2008144 - 财政年份:2020
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: DeepSmith: Scheduling with Quality Guarantees for Efficient DNN Model Execution
合作研究:FMitF:第一轨:DeepSmith:为高效 DNN 模型执行提供质量保证的调度
- 批准号:
2019336 - 财政年份:2020
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
- 批准号:
ST/Z000017/1 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 38.17万 - 项目类别:
Standard Grant