CAREER: Subdivision Schemes and Wavelets: New Tools, New Settings

职业:细分方案和小波:新工具,新设置

基本信息

  • 批准号:
    9984501
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-04-15 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research will focus on three partly relateddirections in multiresolution methods: (I) subdivision schemesand wavelets in the geometric setting, (II) the advantage of redundantsystems and (III) ideal data representation in higher dimensions.Subdivision and multiresolution methods in the geometric settingis a recently launched research area.Prompted by the extremely high interests in applications such as terrainmodeling and 3-D scanning technology, this research direction has attractedthe attention of both computer scientists and applied mathematicians.Existing subdivision schemes for surface generation do not promisewell-defined curvature everywhere in a resulted surface. In variousapplications it is desirable to work with curvature smooth surfaces.In the regular setting the proposer recently constructed a family ofC^2 subdivision schemes with a small interpolating stencil.Underlying this construction is a variety of tools from optimization,wavelet theory and multivairate interpolation theory. This project willfurther refine these tools in order to resolve the original open problemand such that these tools can be applied to other settings as well.For various applications in image reconstruction/processing, itwas found that highly redundant wavelet-like image representationssignificantly outperform the standard non-redundant orthogonalwavelet transforms used ubiquitously in the image codingcommunity. On the one hand, there is currently no complete theoryfor explaining the fundamental advantages of redundancy. On theother hand, researchers have just started to realize thefundamental limits of wavelet transforms in higher dimensions andhave proposed a wide variety of novel data representation schemesthat address these fundamental limits. Research activityunder this project seeks to develop mathematical theory andcomputational tools in the general area of adaptive methods ofrepresenting and analyzing images and other multidimensional data.The educational plan proposes a new way of teachingcomputational science. The projectwill develop teaching materials for our numerical computing coursesthat better suit the needs, interests and mathematical abilityof computer science students. The goal ofthis project is to develop a set ofelectronic lecture notes for our future senior numerical computingcourse. These lecture notes will add two new dimensions to any ofthe existing textbooks: (i) An interactive computationalenvironment (based on QPE's such as Matlab or Octave)will be integrated into the notes so that a student can easily reproduceany computational result presented and derive any newcomputational experiments. (ii) Applicationsareas such as computer graphics, computer vision, data-mining andcomputational fluid dynamics will beused in various places ofthis notes to illustrate the role of numerical methods in industry.
提出的研究将集中在多分辨率方法的三个部分相关方向:(I)几何设置中的细分方案和小波,(II)冗余系统的优势和(III)高维理想数据表示。几何背景下的细分和多分辨率方法是一个新兴的研究领域。由于对地形建模和三维扫描技术等应用的极大兴趣,这一研究方向引起了计算机科学家和应用数学家的关注。现有的曲面生成细分方案并不能保证在生成的曲面上处处都有定义良好的曲率。在各种应用中,需要处理曲率光滑的表面。在常规情况下,利用一个小插值模板构造了一组c ^2细分方案。这种结构的基础是各种工具从优化,小波理论和多变量插值理论。本项目将进一步完善这些工具,以解决最初的开放问题,使这些工具也可以应用于其他设置。对于图像重建/处理中的各种应用,研究发现,高度冗余的类小波图像表示明显优于图像编码社区中普遍使用的标准非冗余正交小波变换。一方面,目前还没有完整的理论来解释冗余的基本优势。另一方面,研究人员刚刚开始意识到高维小波变换的基本限制,并提出了各种新颖的数据表示方案来解决这些基本限制。本项目的研究活动旨在发展数学理论和计算工具,用于表示和分析图像和其他多维数据的自适应方法。该教育计划提出了一种教授计算科学的新方法。该项目将为我们的数值计算课程开发更适合计算机科学学生需求、兴趣和数学能力的教材。本计画的目标是为我们未来的高级数值计算课程开发一套电子课堂讲稿。这些课堂笔记将为现有的教科书增加两个新的维度:(i)交互式计算环境(基于QPE,如Matlab或Octave)将集成到笔记中,以便学生可以轻松地再现任何计算结果并推导任何新的计算实验。(ii)应用领域,如计算机图形学、计算机视觉、数据挖掘和计算流体动力学将在本说明的各个地方被用来说明数值方法在工业中的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Yu其他文献

The NLP Sandbox: an efficient model-to-data system to enable federated and unbiased evaluation of clinical NLP models
NLP 沙箱:一种高效的模型到数据系统,可对临床 NLP 模型进行联合且公正的评估
  • DOI:
    10.48550/arxiv.2206.14181
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yan;Thomas Yu;Kathleen Muenzen;Sijia Liu;Connor Boyle;George Koslowski;Jiaxin Zheng;Nicholas J. Dobbins;Clement Essien;Hongfang Liu;L. Omberg;Meliha Yestigen;Bradley Taylor;James A. Eddy;J. Guinney;S. Mooney;T. Schaffter
  • 通讯作者:
    T. Schaffter
Robust T2 Relaxometry With Hamiltonian MCMC for Myelin Water Fraction Estimation
使用哈密顿量 MCMC 进行稳健的 T2 弛豫测量,用于估计髓磷脂水分数
High optical quality multicarat single crystal diamond produced by chemical vapor deposition
采用化学气相沉积法生产的高光学品质多克拉单晶金刚石
  • DOI:
    10.1002/pssa.201127417
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Meng;Chih‐shiue Yan;S. Kraśnicki;Q. Liang;J. Lai;Haiyun Shu;Thomas Yu;A. Steele;H. Mao;R. Hemley
  • 通讯作者:
    R. Hemley
Simulated Half-Fourier Acquisitions Single-shot Turbo Spin Echo (HASTE) of the Fetal Brain: Application to Super-Resolution Reconstruction
胎儿大脑的模拟半傅里叶采集单次涡轮自旋回波 (HASTE):在超分辨率重建中的应用
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hélène Lajous;T. Hilbert;C. Roy;S. Tourbier;P. D. Dumast;Y. Alemán‐Gómez;Thomas Yu;Hamza Kebiri;J. Ledoux;P. Hagmann;R. Meuli;V. Dunet;M. Koob;M. Stuber;Thomas Kober;M. Cuadra
  • 通讯作者:
    M. Cuadra
Model-informed machine learning for multi-component T2 relaxometry
用于多分量 T2 弛豫测量的基于模型的机器学习
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Yu;Erick Jorge Canales;M. Pizzolato;G. Piredda;T. Hilbert;E. Fischi;M. Weigel;M. Barakovic;M. Bach Cuadra;C. Granziera;T. Kober;J. Thiran
  • 通讯作者:
    J. Thiran

Thomas Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Yu', 18)}}的其他基金

Geometric Approximation and Variational Problems
几何逼近和变分问题
  • 批准号:
    1913038
  • 财政年份:
    2019
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Topics in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法主题
  • 批准号:
    1115915
  • 财政年份:
    2011
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Multiscale Modeling and Approximation in Novel Geometric and Nonlinear Settings
新颖几何和非线性设置中的多尺度建模和逼近
  • 批准号:
    0915068
  • 财政年份:
    2009
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Multiscale Data Representations in Geometric and Nonlinear Settings
几何和非线性设置中的多尺度数据表示
  • 批准号:
    0542237
  • 财政年份:
    2005
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Factors affecting niche and genetic subdivision in animal populations
影响动物种群生态位和遗传细分的因素
  • 批准号:
    RGPIN-2018-03897
  • 财政年份:
    2022
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Factors affecting niche and genetic subdivision in animal populations
影响动物种群生态位和遗传细分的因素
  • 批准号:
    RGPIN-2018-03897
  • 财政年份:
    2021
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Algorithmic Foundation and Framework for Subdivision Methods in Motion Planning and Computational Geometry
AF:小:运动规划和计算几何中细分方法的算法基础和框架
  • 批准号:
    2008768
  • 财政年份:
    2020
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Factors affecting niche and genetic subdivision in animal populations
影响动物种群生态位和遗传细分的因素
  • 批准号:
    RGPIN-2018-03897
  • 财政年份:
    2020
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Factors affecting niche and genetic subdivision in animal populations
影响动物种群生态位和遗传细分的因素
  • 批准号:
    RGPIN-2018-03897
  • 财政年份:
    2019
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Factors affecting niche and genetic subdivision in animal populations
影响动物种群生态位和遗传细分的因素
  • 批准号:
    RGPIN-2018-03897
  • 财政年份:
    2018
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Discovery Grants Program - Individual
Functional subdivision in macaque lateral prefrontal cortex revealed by cognitive test battery
认知测试电池揭示猕猴外侧前额皮质的功能细分
  • 批准号:
    18K03197
  • 财政年份:
    2018
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Remote Sensing for the Characterization of Debris Channel Deformation Processes along the Ashcroft Subdivision in British Columbia
应用遥感技术描述不列颠哥伦比亚省阿什克罗夫特分区沿线的泥石流道变形过程
  • 批准号:
    510537-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Subdivision Based Isogeometric Analysis driven Electro-Acoustic Design
基于细分的等几何分析驱动的电声设计
  • 批准号:
    1725278
  • 财政年份:
    2017
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Texture Synthesis Based on Nonhomogeneous Recursive Subdivision
基于非齐次递归细分的纹理合成
  • 批准号:
    495299-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 24.5万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了