Multiscale Modeling and Approximation in Novel Geometric and Nonlinear Settings

新颖几何和非线性设置中的多尺度建模和逼近

基本信息

  • 批准号:
    0915068
  • 负责人:
  • 金额:
    $ 17.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

Multiscale data representation has been proven to be one of the most effective methods for representing data. Such methods are of major current interests not only in applied mathematics but also in computer science and engineering (especially the computer graphics and scientific simulation communities), and it is the job of applied mathematicians to answer (interrelated) questions such as: When do these methods work?How to fix them when they break? How to bring these methods to novel settings ? etc..The proposed projects develop various multiscale representations of data in novel geometric and nonlinear settings; such representations do for such data what wavelets were able to do for images and signals. The resulted multiscale representations are the key to data compression, feature extraction, noise removal and a number of other signal processing tasks that are key to informational technologies (computer graphics, computer-aided design, wireless communication, etc..), medical imaging technology (MRI and other kinds of radiology), military signal processing(sonar and radar etc.)Our goal of analysis and synthesis of many new types of data fits right into the broad and fundamental goal of finding efficient ways to organize and manipulate enormous and complex volumes of high-dimensional data.Such data analysis problems have gotten so ubiquitous and sophisticated throughout science, medicine, engineering that the need of applying abstract mathematical techniques becomes fruitful and inevitable.The project provides interdisciplinary research and training opportunities for graduate students, and stimulates collaboration among computational mathematicians, engineers and scientists.
多尺度数据表示已被证明是表示数据的最有效方法之一。这些方法不仅在应用数学中,而且在计算机科学和工程(特别是计算机图形学和科学模拟社区)中都是当前的主要兴趣,应用数学家的工作是回答(相互关联的)问题:这些方法什么时候起作用?当它们失效时如何修复它们?如何将这些方法应用到新颖的环境中?拟议的项目开发了在新的几何和非线性环境中对数据的各种多尺度表示;这种表示对这些数据的作用与小波对图像和信号的作用相同。由此产生的多尺度表示是数据压缩、特征提取、噪声去除和许多其他信号处理任务的关键,这些任务对于信息技术(计算机图形学、计算机辅助设计、无线通信等)、医学成像技术(MRI和其他类型的放射学)、军事信号处理(声纳和雷达等)来说是关键。我们分析和合成许多新型数据的目标恰好符合找到有效的方法来组织和处理海量和复杂的高维数据的广泛而基本的目标。这种数据分析问题在整个科学、医学、该项目为研究生提供了跨学科的研究和培训机会,并促进了计算数学家、工程师和科学家之间的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Yu其他文献

The NLP Sandbox: an efficient model-to-data system to enable federated and unbiased evaluation of clinical NLP models
NLP 沙箱:一种高效的模型到数据系统,可对临床 NLP 模型进行联合且公正的评估
  • DOI:
    10.48550/arxiv.2206.14181
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yan;Thomas Yu;Kathleen Muenzen;Sijia Liu;Connor Boyle;George Koslowski;Jiaxin Zheng;Nicholas J. Dobbins;Clement Essien;Hongfang Liu;L. Omberg;Meliha Yestigen;Bradley Taylor;James A. Eddy;J. Guinney;S. Mooney;T. Schaffter
  • 通讯作者:
    T. Schaffter
Robust T2 Relaxometry With Hamiltonian MCMC for Myelin Water Fraction Estimation
使用哈密顿量 MCMC 进行稳健的 T2 弛豫测量,用于估计髓磷脂水分数
High optical quality multicarat single crystal diamond produced by chemical vapor deposition
采用化学气相沉积法生产的高光学品质多克拉单晶金刚石
  • DOI:
    10.1002/pssa.201127417
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Meng;Chih‐shiue Yan;S. Kraśnicki;Q. Liang;J. Lai;Haiyun Shu;Thomas Yu;A. Steele;H. Mao;R. Hemley
  • 通讯作者:
    R. Hemley
Simulated Half-Fourier Acquisitions Single-shot Turbo Spin Echo (HASTE) of the Fetal Brain: Application to Super-Resolution Reconstruction
胎儿大脑的模拟半傅里叶采集单次涡轮自旋回波 (HASTE):在超分辨率重建中的应用
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hélène Lajous;T. Hilbert;C. Roy;S. Tourbier;P. D. Dumast;Y. Alemán‐Gómez;Thomas Yu;Hamza Kebiri;J. Ledoux;P. Hagmann;R. Meuli;V. Dunet;M. Koob;M. Stuber;Thomas Kober;M. Cuadra
  • 通讯作者:
    M. Cuadra
How to Prevent Traffic Accidents: Moral Hazard, Inattention, and Behavioral Data
如何预防交通事故:道德风险、注意力不集中和行为数据

Thomas Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Yu', 18)}}的其他基金

Geometric Approximation and Variational Problems
几何逼近和变分问题
  • 批准号:
    1913038
  • 财政年份:
    2019
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
Topics in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法主题
  • 批准号:
    1115915
  • 财政年份:
    2011
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
Multiscale Data Representations in Geometric and Nonlinear Settings
几何和非线性设置中的多尺度数据表示
  • 批准号:
    0542237
  • 财政年份:
    2005
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Continuing Grant
CAREER: Subdivision Schemes and Wavelets: New Tools, New Settings
职业:细分方案和小波:新工具,新设置
  • 批准号:
    9984501
  • 财政年份:
    2000
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Advancing Approximation of Heterogeneous Multi-Objective Set Covering Problems with Modeling and Applications
LEAPS-MPS:通过建模和应用推进异构多目标集覆盖问题的逼近
  • 批准号:
    2137622
  • 财政年份:
    2021
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
A new signal reconstruction method combining sparse modeling and optimal interpolation approximation theory
稀疏建模与最优插值逼近理论相结合的信号重构新方法
  • 批准号:
    20K04489
  • 财政年份:
    2020
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis and modeling of spatial and temporal non-local properties of turbulent eddy diffusivity approximation
湍流涡扩散率近似的时空非局域特性分析与建模
  • 批准号:
    20K04282
  • 财政年份:
    2020
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Efficient Predictive Modeling for Infrastructure Systems Using Polynomial Approximation
职业:使用多项式逼近对基础设施系统进行高效预测建模
  • 批准号:
    1752302
  • 财政年份:
    2018
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Local Approximation for Large Scale Spatial Modeling
合作研究:CDS
  • 批准号:
    1739097
  • 财政年份:
    2017
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Standard Grant
Lexicographic optimization modeling and approximation algorithm design with performance guarantee for multihead weigher systems
多头秤系统性能保证的词典优化建模和近似算法设计
  • 批准号:
    16K01241
  • 财政年份:
    2016
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: CDS&E-MSS: Local Approximation for Large Scale Spatial Modeling
合作研究:CDS
  • 批准号:
    1621746
  • 财政年份:
    2016
  • 资助金额:
    $ 17.56万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了