Topics in Geometric and Multiscale Numerical Methods

几何和多尺度数值方法主题

基本信息

  • 批准号:
    1115915
  • 负责人:
  • 金额:
    $ 23.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-15 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

There is an emerging interest in various disciplinesof science and engineering to develop parsimonious multiscalerepresentations of data that `lives' on a Riemannian manifold orLie group. Such application areas are growing by leaps and boundsand cognate application problems are arising all the time.Diffusion tensor imaging and collaborative motion modelling aresimple examples of new sensor types and deployments that give riseto massive volumes of data taking values in nonlinear manifolds.We believe that many more such methods are going to be seen in thefuture. The first proposed project allows a kind ofmultiscale representation of nonlinear data that does for suchdata what wavelets were able to do for images and signals. Theresulted multiscale representations are the key to datacompression, feature extraction, noise removal, fast search, andmany other important problems that arise in exploiting such data.There is also an increasing need to extend the current subdivisionmethods to handle also functions, vector fields, 1-forms, etc. on2-D and 3-D manifolds of arbitrary topology. The second proposed projectaddresses part of these needs. The holy grail is to designnumerical algorithms that, in an appropriate sense, respect thegeometric or topological characteristics of the underlyingproblem. The third proposed project is motivated by thevast interests in nanotechnologies. It is speculated thatcomputational nanoscience may gradually take the forefront ofscientific computing in the same way that computational fluiddynamics was at the forefront of scientific computing forseveral decades. In this project we study a central method inelectronic structure computation known as the Kohn-Shamfunctional minimization problem. A specific geometric structure is proposed to be studied. The ultimate goal is to take full advantage of the smooth manifold structure underlying the problem to come up with linear scaling methods that are more efficient, more robust and possess provable, well-understood convergence properties.Our immediate goal of analysis and synthesis of many new types of data, especially those taking values in nonlinear manifolds, as well as functions, vector fields, and differential forms on free-form manifolds, fits right into the broad and fundamental goal of finding efficient ways to organize and manipulate enormous and complex volumes of high-dimensional geometric data. The need of such methods is ubiquitous in science and engineering, so the potential impact of the project is even wider. We also believe that our focused effort here will eventually find their way into large scale scientific and engineering simulation problems, as the fields of computer-aided geometric design and computer-aided engineering are currently converging to each other. In a different direction, we combine rigorous geometric and numerical ideas to attack a centralproblem in electronic structure calculations. The broader impact of this project is evident from the the world-wide interests in material sciences and nanotechnologies. These projects also provide interdisciplinary research and training opportunities for graduate students, and stimulates collaboration among computational mathematicians, engineers and scientists. The publicly available software implementation of our research results further facilitates such training and collaborations.
在科学和工程的各个学科中,有一种新兴的兴趣是开发“生活”在黎曼流形或李群上的数据的简约多尺度表示。这些应用领域正以跨越式的速度发展,相关的应用问题也一直在不断出现。扩散张量成像和协作运动建模是新传感器类型和部署的简单例子,它们会产生大量非线性流形上的数据。我们相信未来会出现更多这样的方法。第一个被提出的项目允许一种非线性数据的多尺度表示,它对这些数据做了小波对图像和信号所做的事情。由此产生的多尺度表示是压缩、特征提取、噪声去除、快速搜索以及利用这些数据所产生的许多其他重要问题的关键。第二个拟议项目解决了这些需求的一部分。圣杯是设计数值算法,在适当的意义上,尊重基本问题的几何或拓扑特征。第三个拟议的项目是出于对纳米技术的巨大兴趣。据推测,计算纳米科学可能会逐渐走在科学计算的最前沿,就像计算流体力学几十年来一直走在科学计算的最前沿一样。在这个项目中,我们研究了电子结构计算中的一个中心方法,称为Kohn-Sham泛函最小化问题。提出了一种具体的几何结构进行研究。我们的最终目标是充分利用光滑流形的结构来提出更有效、更鲁棒、具有可证明的、易于理解的收敛性质的线性尺度方法。我们的近期目标是分析和合成许多新类型的数据,特别是那些在非线性流形上取值的数据,以及自由形式流形上的函数、向量场和微分形式,正好符合寻找有效方法来组织和操作大量复杂的高维几何数据这一广泛而基本的目标。这种方法的需求在科学和工程中无处不在,因此该项目的潜在影响更加广泛。我们还相信,我们在这里集中的努力将最终找到他们的方式进入大规模的科学和工程模拟问题,计算机辅助几何设计和计算机辅助工程领域目前正在相互融合。在另一个不同的方向,我们结合联合收割机严格的几何和数值的想法来攻击一个中心问题,在电子结构计算。该项目的更广泛的影响是显而易见的,从材料科学和纳米技术的世界范围内的利益。这些项目还为研究生提供跨学科研究和培训机会,并促进计算数学家,工程师和科学家之间的合作。我们的研究成果的公开软件实施进一步促进了这种培训和合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Yu其他文献

The NLP Sandbox: an efficient model-to-data system to enable federated and unbiased evaluation of clinical NLP models
NLP 沙箱:一种高效的模型到数据系统,可对临床 NLP 模型进行联合且公正的评估
  • DOI:
    10.48550/arxiv.2206.14181
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yao Yan;Thomas Yu;Kathleen Muenzen;Sijia Liu;Connor Boyle;George Koslowski;Jiaxin Zheng;Nicholas J. Dobbins;Clement Essien;Hongfang Liu;L. Omberg;Meliha Yestigen;Bradley Taylor;James A. Eddy;J. Guinney;S. Mooney;T. Schaffter
  • 通讯作者:
    T. Schaffter
Robust T2 Relaxometry With Hamiltonian MCMC for Myelin Water Fraction Estimation
使用哈密顿量 MCMC 进行稳健的 T2 弛豫测量,用于估计髓磷脂水分数
High optical quality multicarat single crystal diamond produced by chemical vapor deposition
采用化学气相沉积法生产的高光学品质多克拉单晶金刚石
  • DOI:
    10.1002/pssa.201127417
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Meng;Chih‐shiue Yan;S. Kraśnicki;Q. Liang;J. Lai;Haiyun Shu;Thomas Yu;A. Steele;H. Mao;R. Hemley
  • 通讯作者:
    R. Hemley
Simulated Half-Fourier Acquisitions Single-shot Turbo Spin Echo (HASTE) of the Fetal Brain: Application to Super-Resolution Reconstruction
胎儿大脑的模拟半傅里叶采集单次涡轮自旋回波 (HASTE):在超分辨率重建中的应用
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hélène Lajous;T. Hilbert;C. Roy;S. Tourbier;P. D. Dumast;Y. Alemán‐Gómez;Thomas Yu;Hamza Kebiri;J. Ledoux;P. Hagmann;R. Meuli;V. Dunet;M. Koob;M. Stuber;Thomas Kober;M. Cuadra
  • 通讯作者:
    M. Cuadra
How to Prevent Traffic Accidents: Moral Hazard, Inattention, and Behavioral Data
如何预防交通事故:道德风险、注意力不集中和行为数据

Thomas Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Yu', 18)}}的其他基金

Geometric Approximation and Variational Problems
几何逼近和变分问题
  • 批准号:
    1913038
  • 财政年份:
    2019
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
Multiscale Modeling and Approximation in Novel Geometric and Nonlinear Settings
新颖几何和非线性设置中的多尺度建模和逼近
  • 批准号:
    0915068
  • 财政年份:
    2009
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
Multiscale Data Representations in Geometric and Nonlinear Settings
几何和非线性设置中的多尺度数据表示
  • 批准号:
    0542237
  • 财政年份:
    2005
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Continuing Grant
CAREER: Subdivision Schemes and Wavelets: New Tools, New Settings
职业:细分方案和小波:新工具,新设置
  • 批准号:
    9984501
  • 财政年份:
    2000
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Multiscale data geometric networks for learning representations and dynamics of biological systems
用于学习生物系统表示和动力学的多尺度数据几何网络
  • 批准号:
    2327211
  • 财政年份:
    2023
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
  • 批准号:
    RGPIN-2015-04179
  • 财政年份:
    2019
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
  • 批准号:
    RGPIN-2015-04179
  • 财政年份:
    2018
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
  • 批准号:
    RGPIN-2015-04179
  • 财政年份:
    2017
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale Algorithms for the Geometric Analysis of Hyperspectral Data
高光谱数据几何分析的多尺度算法
  • 批准号:
    1720452
  • 财政年份:
    2017
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1756892
  • 财政年份:
    2016
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
  • 批准号:
    RGPIN-2015-04179
  • 财政年份:
    2016
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale models for nanostructures with geometric phases and time-dependent coupling
具有几何相位和时间依赖性耦合的纳米结构的多尺度模型
  • 批准号:
    RGPIN-2015-04179
  • 财政年份:
    2015
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Discovery Grants Program - Individual
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
  • 批准号:
    1222567
  • 财政年份:
    2012
  • 资助金额:
    $ 23.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了