Hyphal Biomechanics in Pathogenic Oomycetes
致病卵菌的菌丝生物力学
基本信息
- 批准号:9985546
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-05-01 至 2004-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the biomechanical strategies that have evolved among filamentous fungi enabling them to penetrate and harvest energy from the solid tissues of plants and animals. While exoenzymes are presumed to play an important role in reducing the mechanical resistance presented by these tissues, the exertion of force at the hyphal apex represents a critical, yet largely ignored factor in invasion. The chosen experimental design reflects a comparative physiological approach and will examine a pair of closely related species of oomycetes (recently assigned to the Kingdom Stramenopila) from the genus Pythium: Pythium insidiosum causes an invasive disease in humans and other mammals, and Pythium graminicola is a pathogen of grasses. The project draws upon a suite of biomechanical techniques developed by the P.I. that will allow analysis of the mechanical behavior of microscopic hyphae. New methods employing ultra-sensitive silicon bridge strain gauges (or force transducers) with UN (millionths of one Newton) resolution will allow direct measurement of the micronewton forces produced by individual hyphae, and will also measure the force required to push glass microprobes into samples of animal and plant tissues. Hyphal force is measured by positioning the strain gauge a few micrometers in advance of a hyphal apex using a micromanipulator. As the cell grows and pushes against the end of the silicon beam, the electrical output from the instrument changes in proportion to the applied force. Comparisons between hyphal forces and the physical resistance of these tissues will establish the potential for mechanical invasion without the action of tissue-degrading enzymes. The relative significance of mechanical penetration versus exogenous enzymes in the invasive process (which remains a fundamental unresolved question in mycology) will then be tested by comparing hyphal forces and the strength of host tissues treated with a variety of fungal enzymes. Further measurements of hyphal turgor pressure, the tensile strength of the hyphal wall, cytoskeletal activity, and cell size will be made to identify key variables that control force at the hyphal apex. These experiments will explore the cellular mechanisms that determine the interaction between hyphae and the physical microenvironment presented by host tissues. While some of these processes may be host specific, others are likely to be universal features of invasive growth. Together, the planned experiments will reveal the significance of biomechanical adaptations in defining the host range (or ecological niche) of oomycetes that infect animals and plants.
该项目涉及丝状真菌中进化的生物力学策略,使它们能够穿透植物和动物的固体组织并从中获取能量。虽然外酶被认为在降低这些组织所呈现的机械阻力方面发挥着重要作用,但在菌丝顶端施加的力代表了入侵中的一个关键但在很大程度上被忽视的因素。所选择的实验设计反映了比较生理学方法,并将检查来自腐霉属的一对密切相关的卵菌物种(最近被分配到原生菌界):Pythium insidiosum 会导致人类和其他哺乳动物的侵袭性疾病,而Pythium graminicola 是草类的病原体。该项目利用了 P.I. 开发的一套生物力学技术。这将允许分析微观菌丝的机械行为。采用具有UN(百万分之一牛顿)分辨率的超灵敏硅桥应变计(或力传感器)的新方法将允许直接测量单个菌丝产生的微牛顿力,并且还将测量将玻璃微探针推入动植物组织样本所需的力。通过使用显微操作器将应变计放置在菌丝顶端几微米的位置来测量菌丝力。当细胞生长并推动硅梁末端时,仪器的电输出与施加的力成比例地变化。比较菌丝力和这些组织的物理抵抗力将确定在没有组织降解酶作用的情况下机械入侵的可能性。然后,通过比较菌丝力和用各种真菌酶处理的宿主组织的强度来测试机械渗透与外源酶在侵入过程中的相对重要性(这仍然是真菌学中尚未解决的基本问题)。将进一步测量菌丝膨压、菌丝壁的拉伸强度、细胞骨架活性和细胞大小,以确定控制菌丝顶端力的关键变量。这些实验将探索决定菌丝与宿主组织呈现的物理微环境之间相互作用的细胞机制。虽然其中一些过程可能是宿主特异性的,但其他过程可能是侵入性生长的普遍特征。总之,计划中的实验将揭示生物力学适应在定义感染动植物的卵菌宿主范围(或生态位)方面的重要性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Money其他文献
Nicholas Money的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Money', 18)}}的其他基金
Ballistospore Discharge: Adaptations Among Mushroom-Forming Fungi
弹孢子排出:蘑菇形成真菌的适应
- 批准号:
0743074 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Evolutionary biomechanics and functional morphology of salamander locomotion
职业:蝾螈运动的进化生物力学和功能形态
- 批准号:
2340080 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
2024 Summer Biomechanics, Bioengineering, and Biotransport Conference; Lake Geneva, Wisconsin; 11-14 June 2024
2024年夏季生物力学、生物工程和生物运输会议;
- 批准号:
2413182 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Cruising the whale superhighway: The evolution, biomechanics, and ecological drivers of migration in cetaceans
巡航鲸鱼高速公路:鲸目动物迁徙的进化、生物力学和生态驱动因素
- 批准号:
NE/Y000757/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
- 批准号:
DP240101449 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
- 批准号:
2338676 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track M: TANDEM: Tensegrity-based Assistive aND rehabilitation Exosuits to complement human bioMechanics
NSF 融合加速器,轨道 M:TANDEM:基于张拉整体的辅助和康复外装,以补充人体生物力学
- 批准号:
2344385 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Doctoral Dissertation Research: The three-dimensional biomechanics of the grasping big toe among higher primates
博士论文研究:高等灵长类抓握大脚趾的三维生物力学
- 批准号:
2341368 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Material testing machine for biomechanics
生物力学材料试验机
- 批准号:
520201861 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Major Research Instrumentation
Stem cell/niche biomechanics in intestinal health and disease
肠道健康和疾病中的干细胞/利基生物力学
- 批准号:
2885708 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Determining the impact of lifestyle-related biomechanics on muscle in the ageing human arm
确定与生活方式相关的生物力学对衰老人类手臂肌肉的影响
- 批准号:
2899554 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




