Efficient Algorithms for Molecular Sequences, Evolutionary Trees, and Physical Maps
分子序列、进化树和物理图谱的高效算法
基本信息
- 批准号:9988353
- 负责人:
- 金额:$ 26.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2004-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Efficient Algorithms for Molecular Sequences, Evolutionary Trees, and Physical Maps"PI: Tao JiangProposal Number: 9988353Institution: University of California-RiversideProject Summary---------------Biological, biomedical and pharmaceutical research is undergoing a majorrevolution as new experimental approaches, such as high-throughput DNAsequencing, are yielding unprecedented amounts of genetic data.The exploration of this information is critically dependent upon the development of advanced computational methods for data analysis.From this dependency, a new interdisciplinary research field, {\em Computational Molecular Biology}, has emerged in recent years. Thisproject aims at investigating some fundamental algorithmic issuesin several key areas of computational molecular biology,including multiple sequence alignment, the reconstruction ofevolutionary trees, physical mapping, and DNA sequencing.Multiple sequence alignment is a standard model for comparing a set of(biomolecular) sequences simultaneously. Software tools for computing multiplesequence alignments are routinely used by biologists.This project continues the study of a unique approach for multiple sequence alignmentthat takes into account the evolutionary history of the input sequences.The objectives include improved approximation methods to compute multiplesequence alignment and evolutionary tree simultaneously. Efficient and accurate inference of evolutionary trees has long been achallenging topic for both biologists and computer scientists. This project is especially focused on quartet-based evolutionary tree reconstructionmethods that attempt to extract topological information about quartets(i.e. sets of four) of input species and then recombine these quartet topologiesinto a full evolutionary tree. Efficient approximation algorithms will be devised that explicitly aim at minimizing the inconsistency between the output treeand the estimated quartet topologies. The other objectives of the project include the study of efficient (approximation)algorithms for some combinatorial problems that are motivated by physical mapping and(shotgun) DNA sequencing, which are two fundamental steps in the Human Genome Project. Some specific topics to be studied include the complexity of fragment identificationin multiple complete digest mapping with bounded multiplicity and the approximationof (vairants of) shortest superstrings.Although this research is theoretical in nature, its results will likely have applications (or implications) in the development of software toolsfor multiple sequence alignment, phylogenetic inference, and restriction mapping.
“分子序列的高效算法,进化 树木和物理地图“PI:Tao Jiang建议编号:9988353机构:加州大学河滨分校项目概要--随着新的实验方法,如高通量DNA测序,正在产生前所未有的数量的遗传数据。这些信息的探索严重依赖于先进的数据计算方法的发展从这种依赖性出发,近年来出现了一个新的跨学科研究领域,即计算分子生物学。本项目旨在研究计算分子生物学的几个关键领域中的一些基本算法问题,包括多序列比对、进化树重建、物理作图和DNA测序。多序列比对是生物学家常用的软件工具,本项目继续研究一种考虑输入序列进化历史的独特的多序列比对方法,其目标包括改进近似方法以同时计算多序列比对和进化树。进化树的高效和精确推理一直是生物学家和计算机科学家的一个挑战性课题。该项目特别关注基于四元组的进化树重建方法,该方法试图提取输入物种的四元组(即四个集合)的拓扑信息,然后将这些四元组拓扑重组成完整的进化树。有效的近似算法将被设计,明确的目的是尽量减少输出treeand估计的四重拓扑结构之间的不一致。该项目的其他目标包括研究一些组合问题的有效(近似)算法,这些问题的动机是物理映射和(鸟枪)DNA测序,这是人类基因组计划中的两个基本步骤。一些具体的研究课题包括多重完全消化映射中片段识别的复杂性和最短超弦的近似性,虽然这项研究是理论性的,但其结果可能会在多重序列比对、系统发育推断和限制性内切酶图谱的软件开发中有应用(或影响)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Jiang其他文献
Chapter 6 – Overhead Reduction
- DOI:
10.1016/b978-0-12-813557-0.00006-1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Tao Jiang - 通讯作者:
Tao Jiang
A Fine-Resolution Snow Depth Retrieval Algorithm From Enhanced-Resolution Passive Microwave Brightness Temperature using Machine Learning in Northeast China
中国东北地区使用机器学习的增强分辨率被动微波亮度温度精细分辨率雪深反演算法
- DOI:
10.1109/lgrs.2022.3196135 - 发表时间:
2022 - 期刊:
- 影响因子:4.8
- 作者:
Yanlin Wei;Xiaofeng Li;Lingjia Gu;Xingming Zheng;Tao Jiang;Zhaojun Zheng - 通讯作者:
Zhaojun Zheng
Analysis of commercial activated carbon controlling ultra-fined particulate emissions from iron ore sintering process
商用活性炭控制铁矿石烧结过程超细颗粒物排放分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.8
- 作者:
Zhiyun Ji;Xiaohui Fan;Min Gan;Xuling Chen;Wei Lv;Jiawen Yao;Feng Cao;Tao Jiang - 通讯作者:
Tao Jiang
Preparation of polystyrene encapsulated Ag nanorods and nanofibers by combination of reverse micelles, gas antisolvent, and ultrasound techniques
反胶束、气体反溶剂和超声技术相结合制备聚苯乙烯封装银纳米棒和纳米纤维
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jianling Zhang;Zhimin Liu;Buxing Han;Tao Jiang;Weize Wu;Jing Chen;Zhonghao Li;Dongxia Liu - 通讯作者:
Dongxia Liu
Filter Bank Orthogonal Frequency Division Multiplexing with Index Modulation
带索引调制的滤波器组正交频分复用
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Huaijin Zhang;Dejin Kong;Yu Xin;Lixia Xiao;Tao Jiang - 通讯作者:
Tao Jiang
Tao Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Jiang', 18)}}的其他基金
Extremal Problems on Graphs and Hypergraphs
图和超图的极值问题
- 批准号:
1855542 - 财政年份:2019
- 资助金额:
$ 26.74万 - 项目类别:
Continuing Grant
EAGER: Transcript-Based Differential Expression Analysis for Population Data Without Predefined Conditions
EAGER:在没有预定义条件的情况下对群体数据进行基于转录的差异表达分析
- 批准号:
1646333 - 财政年份:2016
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
Extremal problems for sparse hypergraphs and graphs
稀疏超图和图的极值问题
- 批准号:
1400249 - 财政年份:2014
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Genome-Wide Inference of mRNA Isoforms and Abundance Estimation from Biased RNA-Seq Reads
合作研究:ABI 创新:mRNA 同工型的全基因组推断和有偏差的 RNA-Seq 读数的丰度估计
- 批准号:
1262107 - 财政年份:2013
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
III-CXT: Collaborative Research: A High-Throughput Approach to the Assignment of Orthologous Genes Based on Genome Rearrangement
III-CXT:协作研究:基于基因组重排的直系同源基因分配的高通量方法
- 批准号:
0711129 - 财政年份:2007
- 资助金额:
$ 26.74万 - 项目类别:
Continuing Grant
Algorithmic Problems in Haplotyping, Oligonucleotide Fingerprinting,and NMR Peak Assignment
单倍型分析、寡核苷酸指纹图谱和 NMR 峰分配中的算法问题
- 批准号:
0309902 - 财政年份:2003
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
ITR: Computational Techniques for Applied Bioinformatics
ITR:应用生物信息学计算技术
- 批准号:
0085910 - 财政年份:2000
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
相似海外基金
PM: Machine Learning Algorithms for Quantum-Logic Spectroscopy of Molecular Ions
PM:分子离子量子逻辑光谱的机器学习算法
- 批准号:
2309315 - 财政年份:2023
- 资助金额:
$ 26.74万 - 项目类别:
Standard Grant
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
- 批准号:
2238831 - 财政年份:2023
- 资助金额:
$ 26.74万 - 项目类别:
Continuing Grant
Models and Algorithms for Molecular Programming
分子编程模型和算法
- 批准号:
RGPIN-2022-03784 - 财政年份:2022
- 资助金额:
$ 26.74万 - 项目类别:
Discovery Grants Program - Individual
Quantum computing algorithms for molecular electronic structure
分子电子结构的量子计算算法
- 批准号:
547235-2020 - 财政年份:2022
- 资助金额:
$ 26.74万 - 项目类别:
Postgraduate Scholarships - Doctoral
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10197672 - 财政年份:2021
- 资助金额:
$ 26.74万 - 项目类别:
Developing novel algorithms for spatial molecular profiling technologies
开发空间分子分析技术的新算法
- 批准号:
10457848 - 财政年份:2021
- 资助金额:
$ 26.74万 - 项目类别:
Quantum computing algorithms for molecular electronic structure
分子电子结构的量子计算算法
- 批准号:
547235-2020 - 财政年份:2021
- 资助金额:
$ 26.74万 - 项目类别:
Postgraduate Scholarships - Doctoral
Multi-resolution Molecular Dynamics Algorithms for Computational Biology
计算生物学的多分辨率分子动力学算法
- 批准号:
EP/V047469/1 - 财政年份:2021
- 资助金额:
$ 26.74万 - 项目类别:
Research Grant
CAREER: New Classical and Quantum Algorithms for Quantum Dynamics of Molecular Collisions and Chemical Reactions at Ultralow Temperatures
职业:超低温下分子碰撞和化学反应的量子动力学的新经典和量子算法
- 批准号:
2045681 - 财政年份:2021
- 资助金额:
$ 26.74万 - 项目类别:
Continuing Grant
Survival Probability Approaches and Scalable Algorithms to Elucidate Molecular-Tether Reactions in Immunoreception and Cell Mechanics
阐明免疫接收和细胞力学中分子系链反应的生存概率方法和可扩展算法
- 批准号:
2052668 - 财政年份:2021
- 资助金额:
$ 26.74万 - 项目类别:
Continuing Grant