III-CXT: Collaborative Research: A High-Throughput Approach to the Assignment of Orthologous Genes Based on Genome Rearrangement
III-CXT:协作研究:基于基因组重排的直系同源基因分配的高通量方法
基本信息
- 批准号:0711129
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-15 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Orthologous genes, or orthologs, are genes in different speciesthat have evolved directly from a common ancestral gene.Genome-scale assignment of orthologs is a fundamental andchallenging problem in computational biology, and has a wide rangeof applications in comparative genomics and functional genomics.This project continues the development of the parsimony approachfor assigning orthologs between closely related genomes which essentially attempts to transform one genome into another by the smallest number of genome rearrangementevents including reversal, translocation, fusion, and fission, as well asgene duplication events. The project addresses three key algorithmicproblems including (i) signed reversal distance withduplicates, (ii) signed transposition distance with duplicates,and (iii) minimum common string partition. Efficient solutions to each ofthese problems are combined and incorporated into a software system for ortholog assignment, called MSOAR. The project encompasses genome-wide analysis of orthologous (and paralogous) relationships on the human and mouse genomes to valdiate the approach, and more importantly,to address several important evolutionary biological questions including the characterization of gains and losses of duplicated genes in the two genomes, the elucidation of gene movements in one genome with respect to the other genome, and the quantification of different mechanisms of gene duplication.Intellectual merit.The parsimony approach presents a novel method for performing genome-wideortholog assignment that takes into account both gene sequences and locations.The above algorithmic problems are new in the literature and their solutionslikely require the introduction of novel algorithm design and analysistechniques. The questions regarding gene duplication and quantification of the duplication mechanisms in model species are of fundamental importance in evolutionary biology.Broader impact.As ortholog assignment is a fundamental problem in comparative genomics andhas become a routine practice in almost all areas of genomics, MSOARwill find itself a wide range of applications in biology and genomics.Moreover, the research will provide the training opportunity for two computer science graduate students in the interdisciplinary field of computational biology.Information concerning this NSF project will be provided at the website:http://msoar.cs.ucr.edu/
直向同源基因(orthologs)是不同物种中的基因,它们直接从一个共同的祖先基因进化而来。直向同源基因的基因组规模分配是计算生物学中的一个基本和具有挑战性的问题,在比较基因组学和功能基因组学中有着广泛的应用。本项目继续发展了用于在密切相关的基因组之间分配直系同源物的简约方法,该方法基本上试图将一个基因组转化为另一种是由最小数量的基因组重组事件引起的,包括逆转、易位、融合和裂变,以及基因复制事件。该项目解决了三个关键的算法问题,包括(i)有符号的逆转距离与重复,(ii)有符号的换位距离与重复,和(iii)最小公共字符串划分。有效的解决方案,这些问题的每一个相结合,并纳入一个软件系统的直系同源物分配,称为MSOAR。 该项目包括全基因组分析的orthopathy(和旁系同源)的关系,以验证该方法,更重要的是,解决几个重要的进化生物学问题,包括表征两个基因组中重复基因的获得和损失,阐明一个基因组相对于另一个基因组的基因运动,和基因复制的不同机制的量化。智力价值。简约的方法提出了一种新的方法来执行基因组-考虑到基因序列和位置的宽直系同源物分配。上述算法问题在文献中是新的,它们的解决方案需要引入新颖的算法设计和分析技术。关于模式物种中基因复制和复制机制的量化问题在进化生物学中具有根本的重要性。影响更广泛。由于直系同源物分配是比较基因组学中的一个基本问题,并已成为基因组学几乎所有领域的常规实践,因此MSOAR将在生物学和基因组学中发现广泛的应用。此外,该研究将为两名计算机科学研究生提供计算生物学跨学科领域的培训机会。2有关该NSF项目的信息将在以下网站上提供:http://msoar.cs.ucr.edu/
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Jiang其他文献
Chapter 6 – Overhead Reduction
- DOI:
10.1016/b978-0-12-813557-0.00006-1 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Tao Jiang - 通讯作者:
Tao Jiang
A Fine-Resolution Snow Depth Retrieval Algorithm From Enhanced-Resolution Passive Microwave Brightness Temperature using Machine Learning in Northeast China
中国东北地区使用机器学习的增强分辨率被动微波亮度温度精细分辨率雪深反演算法
- DOI:
10.1109/lgrs.2022.3196135 - 发表时间:
2022 - 期刊:
- 影响因子:4.8
- 作者:
Yanlin Wei;Xiaofeng Li;Lingjia Gu;Xingming Zheng;Tao Jiang;Zhaojun Zheng - 通讯作者:
Zhaojun Zheng
Analysis of commercial activated carbon controlling ultra-fined particulate emissions from iron ore sintering process
商用活性炭控制铁矿石烧结过程超细颗粒物排放分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.8
- 作者:
Zhiyun Ji;Xiaohui Fan;Min Gan;Xuling Chen;Wei Lv;Jiawen Yao;Feng Cao;Tao Jiang - 通讯作者:
Tao Jiang
Preparation of polystyrene encapsulated Ag nanorods and nanofibers by combination of reverse micelles, gas antisolvent, and ultrasound techniques
反胶束、气体反溶剂和超声技术相结合制备聚苯乙烯封装银纳米棒和纳米纤维
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jianling Zhang;Zhimin Liu;Buxing Han;Tao Jiang;Weize Wu;Jing Chen;Zhonghao Li;Dongxia Liu - 通讯作者:
Dongxia Liu
Filter Bank Orthogonal Frequency Division Multiplexing with Index Modulation
带索引调制的滤波器组正交频分复用
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Huaijin Zhang;Dejin Kong;Yu Xin;Lixia Xiao;Tao Jiang - 通讯作者:
Tao Jiang
Tao Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Jiang', 18)}}的其他基金
Extremal Problems on Graphs and Hypergraphs
图和超图的极值问题
- 批准号:
1855542 - 财政年份:2019
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
EAGER: Transcript-Based Differential Expression Analysis for Population Data Without Predefined Conditions
EAGER:在没有预定义条件的情况下对群体数据进行基于转录的差异表达分析
- 批准号:
1646333 - 财政年份:2016
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Extremal problems for sparse hypergraphs and graphs
稀疏超图和图的极值问题
- 批准号:
1400249 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Genome-Wide Inference of mRNA Isoforms and Abundance Estimation from Biased RNA-Seq Reads
合作研究:ABI 创新:mRNA 同工型的全基因组推断和有偏差的 RNA-Seq 读数的丰度估计
- 批准号:
1262107 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Algorithmic Problems in Haplotyping, Oligonucleotide Fingerprinting,and NMR Peak Assignment
单倍型分析、寡核苷酸指纹图谱和 NMR 峰分配中的算法问题
- 批准号:
0309902 - 财政年份:2003
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Efficient Algorithms for Molecular Sequences, Evolutionary Trees, and Physical Maps
分子序列、进化树和物理图谱的高效算法
- 批准号:
9988353 - 财政年份:2000
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
ITR: Computational Techniques for Applied Bioinformatics
ITR:应用生物信息学计算技术
- 批准号:
0085910 - 财政年份:2000
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
相似国自然基金
吩嗪类化合物CXT-A3对乳腺癌干细胞的抑制作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
1103684 - 财政年份:2010
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
III-CXT-Medium: Collaborative Research: Inference of Complex Genealogical Histories in Populations: Algorithms and Applications
III-CXT-Medium:协作研究:群体中复杂谱系历史的推断:算法和应用
- 批准号:
0803440 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: REGNET - Information Management and Compliance Assistance for Patent Laws and Regulations
III-CXT-Small:合作研究:REGNET - 专利法律法规的信息管理和合规协助
- 批准号:
0811460 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
0812271 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Automatic Geomorphic Mapping and Analysis of Land Surfaces Using Pattern Recognition
III-CXT-Small:协作研究:利用模式识别自动地貌测绘和地表分析
- 批准号:
0812372 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
- 批准号:
0812073 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
- 批准号:
0854606 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
III-CXT-Large: Collaborative Research: Interactive and Intelligent searching of biological images by query and network navigation with learning capabilities.
III-CXT-Large:协作研究:通过具有学习功能的查询和网络导航对生物图像进行交互式和智能搜索。
- 批准号:
0808661 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying
III-CXT-Small:协作研究:结构化、推理和查询
- 批准号:
0812124 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
`III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
`III-CXT-Small:协作研究:在非常大的医学图像数据库中构建、推理和查询
- 批准号:
0812120 - 财政年份:2008
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant