Collaborative Research: ABI Innovation: Genome-Wide Inference of mRNA Isoforms and Abundance Estimation from Biased RNA-Seq Reads
合作研究:ABI 创新:mRNA 同工型的全基因组推断和有偏差的 RNA-Seq 读数的丰度估计
基本信息
- 批准号:1262107
- 负责人:
- 金额:$ 56.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The University of California, Riverside and University of California, Los Angeles are awarded collaborative grants to identify mRNA isoforms on a genome-wide basis. Due to alternative splicing events in eukaryotic cells, the identification of mRNA isoforms (or transcripts) is a difficult problem in molecular biology. Traditional experimental methods for this purpose are time-consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective way to address this problem. This project aims to develop efficient and accurate methods for inferring isoforms and estimating their abundance levels from RNA-Seq data where the reads may be sampled non-uniformly due to the existence of various biases including positional, sequencing and mappability biases. In particular, a novel statistical framework based on quasi-multinomial distributions will be introduced and a companion expectation-maximization (EM) algorithm developed for estimating isoform abundance levels that can handle all above biases in RNA-Seq data. The algorithms will be implemented efficiently in C++, tested extensively on both simulated and real RNA-Seq data in human, mouse and drosophila, and made available to the public for free. The performance of the algorithms will be evaluated extensively using both simulated and real RNA-Seq data. In the latter case, perturbations to some important splicing factors will be introduced into selected cell lines to induce widespread alteration of splicing events. RNA-Seq data of these cells, combined with quantitative RT-PCR validation, will provide an enriched dataset to assess the performance of the algorithms in predicting both isoform abundance and relative variation. In addition, the validation results may provide insight on the regulatory functions of the splicing factors and serve as a testbed for further improvement of the algorithms.The broader impact of this project is twofold. First, RNA-Seq data analysis is a timely topic in bioinformatics due to the recent rapid advance in next generation sequencing (NGS) technologies and its potential impact in life sciences and medicine. Despite the success of many RNA-Seq applications, several challenges remain in the analysis of RNA-Seq data, one of which comes from the understanding and handling of biases in RNA-Seq reads. The approaches proposed in this project for treating RNA-Seq biases combine unique techniques from statistics, machine learning and combinatorial algorithms. Moreover, the experimental validation results may shed light on the regulatory functions of some important splicing factors. Second, the project will provide an excellent opportunity for the training of two computer science PhD students, a postdoc and two biology undergraduate students in the interdisciplinary field of computational biology and bioinformatics. Since many of the involved students are female, the research will also help improve the representation of women in science and engineering.
加州大学河滨分校和加州大学洛杉矶分校获得了合作资助,以在全基因组基础上鉴定 mRNA 亚型。由于真核细胞中存在选择性剪接事件,mRNA亚型(或转录本)的鉴定是分子生物学中的一个难题。用于此目的的传统实验方法既耗时又成本低。新兴的RNA-Seq技术为解决这一问题提供了一种可能有效的方法。该项目旨在开发高效、准确的方法来推断同种型并根据 RNA-Seq 数据估计其丰度水平,其中由于存在各种偏差(包括位置偏差、测序偏差和可映射性偏差),读数可能会不均匀采样。特别是,将引入一种基于准多项分布的新型统计框架,并开发一种配套的期望最大化(EM)算法,用于估计同种型丰度水平,该算法可以处理 RNA-Seq 数据中的所有上述偏差。这些算法将在 C++ 中高效实现,在人类、小鼠和果蝇的模拟和真实 RNA-Seq 数据上进行广泛测试,并免费向公众提供。将使用模拟和真实 RNA-Seq 数据广泛评估算法的性能。在后一种情况下,对一些重要剪接因子的干扰将被引入选定的细胞系中,以诱导剪接事件的广泛改变。这些细胞的 RNA-Seq 数据与定量 RT-PCR 验证相结合,将提供丰富的数据集来评估算法在预测同种型丰度和相对变异方面的性能。此外,验证结果可以提供对剪接因子调节功能的深入了解,并作为进一步改进算法的测试平台。该项目的更广泛影响是双重的。首先,由于下一代测序(NGS)技术最近的快速发展及其对生命科学和医学的潜在影响,RNA-Seq数据分析成为生物信息学中一个及时的话题。尽管许多 RNA-Seq 应用取得了成功,但在 RNA-Seq 数据分析中仍然存在一些挑战,其中之一来自对 RNA-Seq 读取中偏差的理解和处理。该项目提出的治疗 RNA-Seq 偏差的方法结合了统计学、机器学习和组合算法的独特技术。此外,实验验证结果可能有助于揭示一些重要剪接因子的调节功能。其次,该项目将为计算生物学和生物信息学跨学科领域培养两名计算机科学博士生、一名博士后和两名生物学本科生提供绝佳的机会。由于许多参与的学生是女性,这项研究也将有助于提高女性在科学和工程领域的代表性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SDEAP: a splice graph based differential transcript expression analysis tool for population data
- DOI:10.1093/bioinformatics/btw513
- 发表时间:2016-12
- 期刊:
- 影响因子:5.8
- 作者:Ei-Wen Yang;Tao Jiang
- 通讯作者:Ei-Wen Yang;Tao Jiang
Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning
通过深度学习分析核糖体停滞和翻译延伸动力学
- DOI:10.1016/j.cels.2017.08.004
- 发表时间:2017
- 期刊:
- 影响因子:9.3
- 作者:Zhang Sai;He Xuan;Zeng Jianyang;Hu Hailin;Zhou Jingtian;Jiang Tao;Jiang Tao;Jiang Tao;Jiang Tao;Zeng JY
- 通讯作者:Zeng JY
H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of polyploids
H-PoP 和 H-PoPG:用于多倍体单个个体单倍型分析的启发式分区算法
- DOI:10.1093/bioinformatics/btw537
- 发表时间:2016-12-15
- 期刊:
- 影响因子:5.8
- 作者:Xie, Minzhu;Wu, Qiong;Jiang, Tao
- 通讯作者:Jiang, Tao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Jiang其他文献
Detection of the number of two-dimensional harmonics in additive colored noise
加性有色噪声中二维谐波数量的检测
- DOI:
10.1002/wcm.2234 - 发表时间:
2014-06 - 期刊:
- 影响因子:0
- 作者:
Shiyong Yang;Hongwei Li;Tao Jiang - 通讯作者:
Tao Jiang
A Fine-Resolution Snow Depth Retrieval Algorithm From Enhanced-Resolution Passive Microwave Brightness Temperature using Machine Learning in Northeast China
中国东北地区使用机器学习的增强分辨率被动微波亮度温度精细分辨率雪深反演算法
- DOI:
10.1109/lgrs.2022.3196135 - 发表时间:
2022 - 期刊:
- 影响因子:4.8
- 作者:
Yanlin Wei;Xiaofeng Li;Lingjia Gu;Xingming Zheng;Tao Jiang;Zhaojun Zheng - 通讯作者:
Zhaojun Zheng
Stochastic low-carbon scheduling with carbon capture power plants and coupon-based demand response
具有碳捕获发电厂和基于优惠券的需求响应的随机低碳调度
- DOI:
10.1016/j.apenergy.2017.08.119 - 发表时间:
2018 - 期刊:
- 影响因子:11.2
- 作者:
Xue Li;Rufeng Zhang;Linquan Bai;Guoqing Li;Tao Jiang;Houhe Chen - 通讯作者:
Houhe Chen
NLOS Identification for Wideband mmWave Systems at 28 GHz
28 GHz 宽带毫米波系统的 NLOS 识别
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Huang;Lei Tian;Tao Jiang;Jian - 通讯作者:
Jian
A Novel Homomorphic MAC Scheme for Authentication in Network Coding
网络编码中一种新的同态MAC认证方案
- DOI:
10.1109/lcomm.2011.090911.111531 - 发表时间:
2011-10 - 期刊:
- 影响因子:0
- 作者:
Chi Cheng;Tao Jiang - 通讯作者:
Tao Jiang
Tao Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Jiang', 18)}}的其他基金
Extremal Problems on Graphs and Hypergraphs
图和超图的极值问题
- 批准号:
1855542 - 财政年份:2019
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
EAGER: Transcript-Based Differential Expression Analysis for Population Data Without Predefined Conditions
EAGER:在没有预定义条件的情况下对群体数据进行基于转录的差异表达分析
- 批准号:
1646333 - 财政年份:2016
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Extremal problems for sparse hypergraphs and graphs
稀疏超图和图的极值问题
- 批准号:
1400249 - 财政年份:2014
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
III-CXT: Collaborative Research: A High-Throughput Approach to the Assignment of Orthologous Genes Based on Genome Rearrangement
III-CXT:协作研究:基于基因组重排的直系同源基因分配的高通量方法
- 批准号:
0711129 - 财政年份:2007
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
Algorithmic Problems in Haplotyping, Oligonucleotide Fingerprinting,and NMR Peak Assignment
单倍型分析、寡核苷酸指纹图谱和 NMR 峰分配中的算法问题
- 批准号:
0309902 - 财政年份:2003
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Efficient Algorithms for Molecular Sequences, Evolutionary Trees, and Physical Maps
分子序列、进化树和物理图谱的高效算法
- 批准号:
9988353 - 财政年份:2000
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
ITR: Computational Techniques for Applied Bioinformatics
ITR:应用生物信息学计算技术
- 批准号:
0085910 - 财政年份:2000
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
- 批准号:
2034568 - 财政年份:2021
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
2201182 - 财政年份:2021
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
- 批准号:
2209978 - 财政年份:2021
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
- 批准号:
2048296 - 财政年份:2020
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
2021734 - 财政年份:2020
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
- 批准号:
2027203 - 财政年份:2019
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
- 批准号:
1854685 - 财政年份:2018
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
- 批准号:
1756250 - 财政年份:2018
- 资助金额:
$ 56.99万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
- 批准号:
1759472 - 财政年份:2018
- 资助金额:
$ 56.99万 - 项目类别:
Standard Grant