Diffusions and Their Applications

扩散及其应用

基本信息

  • 批准号:
    9988496
  • 负责人:
  • 金额:
    $ 11.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

Several problems in probability theory will be studied. The first is the question of uniqueness for diffusions on fractals. For infinitely ramified fractals such as the Sierpinski carpet it is not yet known whether all possible constructions of Brownian motion whose state space is the fractal lead to the same process. This problem has applications to mathematical physics. Another concerns applying probabilistic techniques to the hot spots problem, a difficult problem in analysis. The hot spots problem is to determine where the solution to the heat equation with reflecting boundaries takes its maximum. A third problem is the estimation of the heat kernel, a problem that is related to partial differential equations. The heat equation for elliptic operators in divergence form has a fundamental solution that is comparable to that for the Laplacian. Is this true when the state space is not Euclidean space, but rather a more general manifold? Several problems in probability theory will be studied. They are all related to analysis and partial differential equations, in particular, to the heat equation. The heat equation governs the flow of heat as well as many other physical quantities. Interestingly enough, the study of random processes such as Brownian motion, can shed a great deal of light on the solutions of the heat equation in various media.
将研究概率论中的几个问题。第一个问题是分形上扩散的唯一性问题。对于像谢尔宾斯基地毯这样的无限分歧的分形,目前还不知道状态空间为分形的布朗运动的所有可能的构造是否都导致相同的过程。这个问题在数学物理中有应用。另一个问题是将概率技术应用于热点问题,这是分析中的一个难题。热点问题是确定具有反射边界的热方程的解在何处取最大值。第三个问题是热核的估计,这是一个与偏微分方程有关的问题。发散形式的椭圆算子的热方程有一个基本解,可以与拉普拉斯算子的基本解相媲美。当状态空间不是欧几里德空间,而是更一般的流形时,这是真的吗?将研究概率论中的几个问题。它们都与分析和偏微分方程有关,特别是热方程。热方程控制着热量的流动以及许多其他物理量。有趣的是,对布朗运动等随机过程的研究,可以揭示各种介质中热方程的解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Bass其他文献

The A, ASC, and L systems for the transport of amino acids in Chinese hamster ovary cells (CHO-K1).
中国仓鼠卵巢细胞 (CHO-K1) 中转运氨基酸的 A、ASC 和 L 系统。
  • DOI:
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Richard Bass;Holly;B. HedegaardS;Larry Dillehayg;John Moffett;Ellis Englesberga
  • 通讯作者:
    Ellis Englesberga
Allergen Vial Mixing and Immunotherapy: Risks of Infections and Vial Contamination
过敏原小瓶混合和免疫治疗:感染和小瓶污染的风险
The martingales of an independent increment process
  • DOI:
    10.1016/0304-4149(79)90045-0
  • 发表时间:
    1979-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Bass
  • 通讯作者:
    Richard Bass
The site for catabolite deactivation in the L-arabinose BAD operon in Escherichia coli B/r
  • DOI:
    10.1007/bf00416978
  • 发表时间:
    1976-10-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Richard Bass;Laurel Heffernan;Katherine Sweadner;Ellis Englesberg
  • 通讯作者:
    Ellis Englesberg

Richard Bass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Bass', 18)}}的其他基金

Stochastic differential equations: potential theory and uniqueness
随机微分方程:势论和唯一性
  • 批准号:
    0901505
  • 财政年份:
    2009
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Analysis of multidimensional processes
多维过程分析
  • 批准号:
    0601783
  • 财政年份:
    2006
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant
Multidimensional Stochastic Analysis
多维随机分析
  • 批准号:
    0244737
  • 财政年份:
    2003
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Brownian Motion and Related Processes
数学科学:布朗运动及相关过程
  • 批准号:
    9322689
  • 财政年份:
    1994
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant
ENG/INT Joint Grant Opportunities For Collaborative Research at Foreign Centers of Excellence: Electric Vehicles Infrastructure
ENG/INT 国外卓越中心合作研究联合资助机会:电动汽车基础设施
  • 批准号:
    9412636
  • 财政年份:
    1994
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Seminar on Stohastic Processes; Seattle, Washington, March 26-28, 1992
数学科学:随机过程研讨会;
  • 批准号:
    9119558
  • 财政年份:
    1992
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Brownian Motion and Diffusions
数学科学:布朗运动和扩散
  • 批准号:
    9100244
  • 财政年份:
    1991
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant
US-UK Cooperative Research: Diffusions on Fractals
美英合作研究:分形扩散
  • 批准号:
    8921538
  • 财政年份:
    1990
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Stochastic Processes
数学科学:随机过程
  • 批准号:
    8822053
  • 财政年份:
    1989
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Stochastic Processes
数学科学:随机过程
  • 批准号:
    8701073
  • 财政年份:
    1987
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant

相似海外基金

Bridging the gap between Key-Evolving Signatures and Their Applications
弥合密钥演化签名及其应用之间的差距
  • 批准号:
    DP240100017
  • 财政年份:
    2024
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Discovery Projects
Approaches to building patient-oriented research capacity and their applications to the transformation of healthcare services and interventions
建立以患者为中心的研究能力的方法及其在医疗保健服务和干预措施转型中的应用
  • 批准号:
    477895
  • 财政年份:
    2024
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Salary Programs
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
  • 批准号:
    DP240101084
  • 财政年份:
    2024
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Discovery Projects
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
  • 批准号:
    24K06852
  • 财政年份:
    2024
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
REU Site: Research on Computational Methods in High Performance Computing and Their Applications to Computational Sciences
REU 网站:高性能计算中的计算方法及其在计算科学中的应用研究
  • 批准号:
    2348884
  • 财政年份:
    2024
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Stochastic maximal inequalities for semimartingales and their applications to statistics
半鞅的随机最大不等式及其在统计中的应用
  • 批准号:
    24K14866
  • 财政年份:
    2024
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of the dual spaces of function spaces defined by nonlinear integrals and their applications
非线性积分定义的函数空间的对偶空间的表示及其应用
  • 批准号:
    23K03164
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of discrete dynamical systems described by max-plus equations and their applications
最大加方程描述的离散动力系统分析及其应用
  • 批准号:
    23K03238
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
2023 Nanoporous Materials and Their Applications Gordon Research Conference and Gordon Research Seminar
2023纳米多孔材料及其应用戈登研究会议暨戈登研究研讨会
  • 批准号:
    2325516
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Development of novel nanobubbles composed of antibody drugs and ultrasound contrast gas and their potential applications
抗体药物与超声对比气体组成的新型纳米气泡的研制及其潜在应用
  • 批准号:
    23K18565
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了