Problems in Operator and Matrix Analysis

算子和矩阵分析中的问题

基本信息

  • 批准号:
    9988579
  • 负责人:
  • 金额:
    $ 20.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT:Professors Rodman, Spitkovsky and Woerdeman will continue their study of avariety of problems in operator and matrix analysis and their applicationsin science and engineering. These include: (1) Completion of TriangularOperators, (2) Interpolation, (3) Indefinite Inner Product Spaces, (4)Almost Periodic Factorization, (5) Orthogonal Polynomials of SeveralVariables and Generalizations. For completion problems, invariants andsemiinvariants of the triangular group action will be studied and thenused in the Jordan form and operator spectrum assignment problems. Normalcompletions and positive definite 2D Toeplitz completions will also belooked into. Multipoint interpolation for matrix valued functions will bedeveloped, and further advances in interpolation of matrix and operatorfunctions with symmetries will be obtained. Applications of non-stationaryinterpolation will be explored. Classification of normal operators onindefinite inner product spaces will be developed, and generalized furtherto a spectral theory for sets of commuting J-selfadjoint operators. Studyof polar decomposition and J-spectral factorization will be continued. ThePIs will also continue their research on positive and contractiveextension problems for almost periodic matrix functions in severalvariables, with additional emphasis on the computational aspects. Therelated issues include invertibility and Fredholmness criteria forToeplitz operators with almost periodic matrix symbols, finite sectionmethods for these operators on Besikovitch spaces, and explicitfactorization of almost periodic matrix functions in one and severalvariables. Orthogonal polynomials of several variables, related minimizing polynomials, and their connections with Riemann-Hilbert problems will be investigated with the use of the new band method developed by the PIs recently.The proposed research concerns classical areas of analysis and operatortheory. The choice of topics is both influenced by and aimed toapplications. For example, the expected results in the theory oforthogonal polynomials for several variables and related completionproblems will be used in filter design, compression and analysis ofimages, texture modeling, and multivariate stochastic processes. Classical (Wiener-Hopf) factorization has been used as a powerful tool inintegral equations, partial differential equations and diffraction theory. The PIs will continue their study of its natural generalization to almost periodic matrix valued functions (of one and several variables) whicharises in consideration of integral equations on finite intervals andrelated problems in inverse scattering and other parts of mathematicalphysics. Another example concerns polar decompositions of operators acting on Krein spaces motivated by linear optics of polarized light. Interaction with scientists and engineers is anticipated. In addition, the PIs willalso involve undergraduate students in their research.
摘要:Rodman、Spitkovsky和Woerdeman教授将继续研究算子和矩阵分析中的各种问题及其在科学和工程中的应用。它们包括:(1)三角算子的完备化,(2)内插,(3)不定内积空间,(4)概周期因式分解,(5)数列变量的正交多项式及其推广。对于完备化问题,将研究三角群作用的不变量和半不变量,并将其用于Jordan形式和算子谱分配问题。正规完备化和正定2D Toeplitz完备化也将深入研究。将发展矩阵值函数的多点内插,并在具有对称性的矩阵和算子函数的内插方面取得进一步的进展。将探索非平稳插补的应用。发展了不定内积空间上正规算子的分类,并进一步推广到交换J-自伴算子集的谱理论。极分解和J-谱因式分解的研究将继续进行。PI还将继续研究几个变量的概周期矩阵函数的正扩张和压缩扩张问题,并将重点放在计算方面。相关问题包括具有几乎周期矩阵符号的Toeplitz算子的可逆性和Fredholm性准则,这些算子在Besikovitch空间上的有限截面方法,以及一元和几元概周期矩阵函数的显式分解。利用PI最近发展的新的带法,研究多元正交多项式,相关的极小多项式,以及它们与Riemann-Hilbert问题的关系。选题既受应用的影响,又针对应用。例如,多元正方多项式理论中的预期结果和相关的完成问题将被用于滤波器设计、图像的压缩和分析、纹理建模和多变量随机过程。经典(Wiener-Hopf)分解在积分方程组、偏微分方程组和绕射理论中已成为一种强有力的工具。PI将继续研究它对概周期矩阵值函数(一元和多变量)的自然推广,这将考虑有限区间上的积分方程和逆散射中的相关问题以及数学物理的其他部分。另一个例子涉及作用于Krein空间的算子的极分解,这些算子是由偏振光的线性光学驱动的。预计将与科学家和工程师进行互动。此外,PIs还将让本科生参与他们的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leiba Rodman其他文献

Positivity and strict contractivity of functions of operators
Krein-Langer Factorizations via Pole Triples
  • DOI:
    10.1007/s00020-002-1158-z
  • 发表时间:
    2003-10-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Vladimir Bolotnikov;Leiba Rodman
  • 通讯作者:
    Leiba Rodman
Generalized canonical factorization of matrix and operator functions with definite hermitian part
On existence of common multiples of monic operator polynomials
Ratio Numerical Ranges of Operators
  • DOI:
    10.1007/s00020-011-1898-8
  • 发表时间:
    2011-08-31
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Leiba Rodman;Ilya M. Spitkovsky
  • 通讯作者:
    Ilya M. Spitkovsky

Leiba Rodman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leiba Rodman', 18)}}的其他基金

Nineteenth International Workshop on Operator Theory and Applications
第十九届算子理论与应用国际研讨会
  • 批准号:
    0757364
  • 财政年份:
    2008
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Wiener - Hopf Factorization and its Applications
维纳 - Hopf 分解及其应用
  • 批准号:
    0456625
  • 财政年份:
    2005
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Continuing Grant
Almost Periodic and Multivariable Periodic Matrix Functions: Extensions, Factorizations, Applications
准周期和多变量周期矩阵函数:扩展、因式分解、应用
  • 批准号:
    9800704
  • 财政年份:
    1998
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Linear Analysis
数学科学:线性分析问题
  • 批准号:
    9500924
  • 财政年份:
    1995
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Problems in Operator Theory and Matrix Analysis
数学科学:RUI:算子理论和矩阵分析中的问题
  • 批准号:
    9123841
  • 财政年份:
    1992
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Continuing Grant
U.S.-Netherlands Cooperative Research on Invariant Subspacesand Factorization of Rational Matrix Functions (Mathematics)
美国-荷兰关于不变子空间和有理矩阵函数分解的合作研究(数学)
  • 批准号:
    9024538
  • 财政年份:
    1991
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Meromorphic Matrix and Operator Functions
数学科学:亚纯矩阵和算子函数
  • 批准号:
    8501794
  • 财政年份:
    1985
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant

相似海外基金

Operator theory and matrix analysis methods in quantum information theory
量子信息论中的算子理论和矩阵分析方法
  • 批准号:
    RGPIN-2019-05276
  • 财政年份:
    2022
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Discovery Grants Program - Individual
Operator theory and matrix analysis methods in quantum information theory
量子信息论中的算子理论和矩阵分析方法
  • 批准号:
    RGPIN-2019-05276
  • 财政年份:
    2021
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Discovery Grants Program - Individual
Operator theory and matrix analysis methods in quantum information theory
量子信息论中的算子理论和矩阵分析方法
  • 批准号:
    RGPIN-2019-05276
  • 财政年份:
    2020
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Discovery Grants Program - Individual
Modern Aspects of Multivariable Operator Theory and Matrix Analysis
多变量算子理论和矩阵分析的现代方面
  • 批准号:
    2000037
  • 财政年份:
    2020
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Operator theory and matrix analysis methods in quantum information theory
量子信息论中的算子理论和矩阵分析方法
  • 批准号:
    RGPIN-2019-05276
  • 财政年份:
    2019
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Discovery Grants Program - Individual
Investigations in Matrix and Operator Theory
矩阵和算子理论的研究
  • 批准号:
    DDG-2016-00001
  • 财政年份:
    2018
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Discovery Development Grant
Operator Theory and Matrix Inequalities
算子理论和矩阵不等式
  • 批准号:
    1764231
  • 财政年份:
    2018
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Standard Grant
Matrix/operator analysis (inequalities, mean, majorization) and applications to quantum information
矩阵/算子分析(不等式、均值、多数化)及其在量子信息中的应用
  • 批准号:
    17K05266
  • 财政年份:
    2017
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigations in Matrix and Operator Theory
矩阵和算子理论的研究
  • 批准号:
    DDG-2016-00001
  • 财政年份:
    2016
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Discovery Development Grant
The div A grad Operator with Indefinite Coefficient Matrix A
具有不定系数矩阵 A 的 div A grad 运算符
  • 批准号:
    266699624
  • 财政年份:
    2014
  • 资助金额:
    $ 20.15万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了