Thermodynamic and Geometric Optimization of Systems with Flow Irreversibilities

具有流动不可逆性的系统的热力学和几何优化

基本信息

  • 批准号:
    0001269
  • 负责人:
  • 金额:
    $ 20.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-01 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

This project extends in several new directions the method of optimizing thermodynamically the geometry of tree-shaped flows between points and volumes. The geometric details of the flow structure will be deduced from the maximization of global thermodynamic performance (e.g., overall flow resistance) subject to global constraints. Examples are the tree-shaped networks that collect and distribute water and electric power over a territory. The method will also be extended to economics, where the flow consists of goods, and the global objective is revenue maximization. In the field of bioheat transfer, the method will be applied to the pairs of fluid trees (arteries and veins) that are present in vascularized tissues. Flows that are shaped as trees are found everywhere in natural systems, animate and inanimate (e.g., lungs, rivers, lighting). They are also prevalent in engineering, economics and society. The objective of this project is to deduce the optimal geometric structure of tree-shaped flows from the principle of maximizing the global performance of the system permeated by the flow. For example, in a tree network for the distribution of water and electric power over an urban area the global objective is minimum flow resistance and minimum cost. In economics, in the distribution or collection of goods over a territory, the objective is the maximization of revenue. In vascularized tissues under the skin, where trees of arteries and veins are arranged in pairs and in counterflow, the objective is the minimization of flow resistance and body heat loss. All these flow structures will be generated and studied from the point of view of geometric optimization based on global thermodynamic optimization.
这个项目在几个新的方向上扩展了优化热力学的方法,即点和体积之间的树状流动的几何形状。流动结构的几何细节将从全局约束下的全局热力性能(例如,总体流动阻力)的最大化中推导出来。在一个地区收集和分配水和电力的树状网络就是一个例子。这种方法还将扩展到经济学领域,在经济学中,流动由商品组成,全球目标是收入最大化。在生物热传递领域,该方法将应用于血管组织中存在的流体树对(动脉和静脉)。树木形状的水流在自然系统中随处可见,无论是有生命的还是无生命的(例如,肺、河流、灯光)。它们在工程、经济和社会中也很普遍。本课题的目标是从最大化系统整体性能的原则出发,推导出树形流的最优几何结构。例如,在城市地区供水和电力分配的树形网络中,全局目标是最小的流动阻力和最小的成本。在经济学中,在一个地区内分配或收集货物时,目标是使收入最大化。在皮肤下的血管组织中,动脉和静脉成对排列并逆流排列,目标是将流动阻力和身体热量损失降至最低。所有这些流动结构都将从基于全局热力学优化的几何优化的角度来生成和研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Bejan其他文献

Novel evaporator architecture with entrance-length crossflow-paths for supercritical Organic Rankine Cycles
  • DOI:
    10.1016/j.ijheatmasstransfer.2017.11.042
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrian S. Sabau;Ali H. Nejad;James W. Klett;Adrian Bejan;Kivanc Ekici
  • 通讯作者:
    Kivanc Ekici
Vascular flow design and predicting evolution
  • DOI:
    10.1016/j.icheatmasstransfer.2024.107517
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrian Bejan
  • 通讯作者:
    Adrian Bejan
Heat tubes: Conduction and convection
  • DOI:
    10.1016/j.ijheatmasstransfer.2019.03.160
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrian Bejan
  • 通讯作者:
    Adrian Bejan
Natural convection in a partially divided enclosure
  • DOI:
    10.1016/s0017-9310(83)80157-4
  • 发表时间:
    1983-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nienchuan N. Lin;Adrian Bejan
  • 通讯作者:
    Adrian Bejan
Parabolic scaling of tree-shaped constructal network
  • DOI:
    10.1016/j.physa.2007.05.037
  • 发表时间:
    2007-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Diogo Queiros-Conde;Jocelyn Bonjour;Wishsanuruk Wechsatol;Adrian Bejan
  • 通讯作者:
    Adrian Bejan

Adrian Bejan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Bejan', 18)}}的其他基金

EAGER: Heat Networks and Energy & Environment Design
EAGER:热网和能源
  • 批准号:
    1347188
  • 财政年份:
    2014
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
SGER-Exploratory Research with Constructal Theory: Vascular Designs
SGER-结构理论探索性研究:血管设计
  • 批准号:
    0831229
  • 财政年份:
    2008
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
AOC: Constructal Theory of Social Dynamics
AOC:社会动力学建构理论
  • 批准号:
    0524539
  • 财政年份:
    2005
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
New 4th Year Undergraduate Course on Constructal Design of Energy-System Configuration
新四年级本科生课程《能源系统配置结构设计》
  • 批准号:
    0336848
  • 财政年份:
    2004
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0209513
  • 财政年份:
    2002
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Fellowship Award
US-South Africa Workshop: Energy and Environment, Durban, South Africa, June 1998
美国-南非研讨会:能源与环境,南非德班,1998 年 6 月
  • 批准号:
    9731204
  • 财政年份:
    1998
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Thermodynamic Optimization of Systems with Heat and Fluid Flow Irreversibilities
具有热和流体流动不可逆性的系统的热力学优化
  • 批准号:
    9706942
  • 财政年份:
    1997
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Thermodynamic Optimization of Power Systems with Fluid Flow Irreversibilities
具有流体流动不可逆性的电力系统的热力学优化
  • 批准号:
    9521722
  • 财政年份:
    1995
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Optimization of Defrosting Refrigerators and Ice Making Processes
冰箱除霜和制冰过程的优化
  • 批准号:
    9321918
  • 财政年份:
    1994
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Judiciously Unconstrained Research on Controversial Topics in Thermal Engineering
对热能工程争议话题的明智、不受约束的研究
  • 批准号:
    8711369
  • 财政年份:
    1987
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
  • 批准号:
    2247096
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
  • 批准号:
    2307801
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
RUI: Geometric Optimization Involving Partial Differential Equations
RUI:涉及偏微分方程的几何优化
  • 批准号:
    2208373
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
RUI: Optimization on Geometric Spanner Networks from a Combinatorial Perspective
RUI:从组合角度优化几何扳手网络
  • 批准号:
    2154347
  • 财政年份:
    2022
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Geometric optimization and polygonal geometry
几何优化和多边形几何
  • 批准号:
    2102802
  • 财政年份:
    2021
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Fine-Grained Complexity of Geometric Optimization Problems
几何优化问题的细粒度复杂性
  • 批准号:
    564219-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 20.57万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Modern nonconvex optimization for machine learning: foundations of geometric and scalable techniques
职业:机器学习的现代非凸优化:几何和可扩展技术的基础
  • 批准号:
    1846088
  • 财政年份:
    2019
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Computational, Combinatorial, and Geometric Aspects of Linear Optimization
线性优化的计算、组合和几何方面
  • 批准号:
    RGPIN-2015-06163
  • 财政年份:
    2019
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric aspects of optimization
优化的几何方面
  • 批准号:
    RGPIN-2015-04955
  • 财政年份:
    2019
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Constellation Optimization for Nonlinear Fiber-Optic Communications
非线性光纤通信的几何星座优化
  • 批准号:
    544622-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了