Shape Optimization, Free Boundary Problems, and Geometric Measure Theory
形状优化、自由边界问题和几何测量理论
基本信息
- 批准号:2247096
- 负责人:
- 金额:$ 24.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Optimizing a shape to have the best physical properties or make the most efficient use of a material is a basic type of problem in applied mathematics, appearing in the design of electronic components, insulation, aerodynamics, imaging, acoustics, manufacturing, as well as in physical processes like the formation of liquid drops and crystals. Mathematically, such optimal shapes are interpreted as solutions to free boundary problems, a kind of generalized differential equation where the edge of the shape is one of the unknowns being solved for. Free boundary problems are a classical but difficult topic in mathematical analysis, and the goal of this project is to develop more robust tools for understanding the local and global characteristics of wider classes of such equations. Better mathematical understanding may lead to smarter and safer approaches to the applied problems through rigorous approximation schemes, analysis of stability under perturbations, and rigid qualitative properties of solutions. This project offers training opportunities for undergraduate students, graduate students, and postdoctoral researchers, in a mathematical area with important industrial applications.The specific topics to be considered include multi-phase or vectorial Bernoulli problems, two-phase parabolic free boundary problems of various types, discontinuous semilinear problems lacking scale invariance, free boundaries for nonlocal operators, and transmission problems. One approach will focus on quantitative monotonicity formula methods combined with geometric measure theory to prove estimates for problems with little rigid structure. Another will be to develop linearization arguments for situations currently outside the scope of known approaches, where the tangent objects are relatively poor approximations for the problem locally. A major focus of the project is on novel and improved techniques which may be useful in a variety of contexts rather than on individual problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
优化形状,使其具有最佳的物理性能或最有效地利用材料,是应用数学中的一种基本问题,出现在电子元件、绝缘、空气动力学、成像、声学、制造以及液滴和晶体形成等物理过程中。在数学上,这种最优形状被解释为自由边界问题的解,这是一种广义微分方程,其中形状的边是要求解的未知数之一。自由边界问题是数学分析中的一个经典而又困难的话题,这个项目的目标是开发更健壮的工具来理解更广泛的这类方程的局部和全局特征。通过严格的近似格式、扰动下的稳定性分析和解的刚性定性性质,更好的数学理解可能会导致对应用问题的更智能和更安全的方法。这个项目为本科生、研究生和博士后研究人员提供了在具有重要工业应用的数学领域的培训机会。要考虑的具体主题包括多相或矢量伯努利问题、各种类型的两相抛物型自由边界问题、缺乏尺度不变性的间断半线性问题、非局部算子的自由边界以及传输问题。一种方法将重点放在定量单调公式方法上,并结合几何测量理论来证明具有较小刚性结构的问题的估计。另一种方法是为目前在已知方法范围之外的情况开发线性化论点,在这些情况下,切线对象对问题的局部逼近相对较差。该项目的一个主要焦点是新的和改进的技术,这些技术可能在各种情况下有用,而不是在个别问题上有用。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Kriventsov其他文献
Rectifiability and uniqueness of blow-ups for points with positive Alt–Caffarelli–Friedman limit
- DOI:
10.1007/s00208-024-03077-3 - 发表时间:
2025-01-06 - 期刊:
- 影响因子:1.400
- 作者:
Mark Allen;Dennis Kriventsov;Robin Neumayer - 通讯作者:
Robin Neumayer
A free boundary problem related to thermal insulation: flat implies smooth
- DOI:
10.1007/s00526-019-1509-0 - 发表时间:
2019-03-27 - 期刊:
- 影响因子:2.000
- 作者:
Dennis Kriventsov - 通讯作者:
Dennis Kriventsov
Dennis Kriventsov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Kriventsov', 18)}}的其他基金
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 24.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NSF-BSF: AF: Small: Parameter-Free Stochastic Optimization via Trajectory Cues
NSF-BSF:AF:小:通过轨迹线索进行无参数随机优化
- 批准号:
2239527 - 财政年份:2023
- 资助金额:
$ 24.61万 - 项目类别:
Standard Grant
Cell-free DNA-Based Analysis for Diagnosis, Monitoring and Optimization of Therapy for Patients with Primary Central Nervous System Lymphomas
基于游离 DNA 的分析用于原发性中枢神经系统淋巴瘤患者的诊断、监测和治疗优化
- 批准号:
10705063 - 财政年份:2022
- 资助金额:
$ 24.61万 - 项目类别:
Derivative-Free Optimization: Algorithmic Developments, Software Design, Applications, and Machine Learning
无导数优化:算法开发、软件设计、应用程序和机器学习
- 批准号:
RGPIN-2018-05286 - 财政年份:2022
- 资助金额:
$ 24.61万 - 项目类别:
Discovery Grants Program - Individual
Cell-free DNA-Based Analysis for Diagnosis, Monitoring and Optimization of Therapy for Patients with Primary Central Nervous System Lymphomas
基于游离 DNA 的分析用于原发性中枢神经系统淋巴瘤患者的诊断、监测和治疗优化
- 批准号:
10420404 - 财政年份:2022
- 资助金额:
$ 24.61万 - 项目类别:
Second-order Hessian-free methods for statistical learning and stochastic optimization
用于统计学习和随机优化的二阶无 Hessian 方法
- 批准号:
RGPIN-2022-04400 - 财政年份:2022
- 资助金额:
$ 24.61万 - 项目类别:
Discovery Grants Program - Individual
Intelligent transmission and energy optimization strategies for multi-cell/cell-free massive MIMO and D2D under millimeter wave channels in next generation wireless communication systems
下一代无线通信系统毫米波信道下多小区/无小区大规模MIMO和D2D的智能传输和能量优化策略
- 批准号:
532238-2019 - 财政年份:2021
- 资助金额:
$ 24.61万 - 项目类别:
Postdoctoral Fellowships
Derivative-Free Optimization: Algorithmic Developments, Software Design, Applications, and Machine Learning
无导数优化:算法开发、软件设计、应用程序和机器学习
- 批准号:
RGPIN-2018-05286 - 财政年份:2021
- 资助金额:
$ 24.61万 - 项目类别:
Discovery Grants Program - Individual
NSERC I2I Phase 1: "Product Optimization for a Novel SO2-Free Nickel Extraction Technology"
NSERC I2I 第 1 阶段:“新型无 SO2 镍提取技术的产品优化”
- 批准号:
566697-2021 - 财政年份:2021
- 资助金额:
$ 24.61万 - 项目类别:
Idea to Innovation
Gradient-free shape optimization of vertical-axis wind turbines using dynamic resolution adaptation
使用动态分辨率自适应的垂直轴风力涡轮机的无梯度形状优化
- 批准号:
565759-2021 - 财政年份:2021
- 资助金额:
$ 24.61万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's