Global Stability and Robustness Properties of Neural Control Systems
神经控制系统的全局稳定性和鲁棒性
基本信息
- 批准号:0070039
- 负责人:
- 金额:$ 22.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-15 至 2003-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0070039AnnaswamyThe use of neural networks in identification and control of engineering systems has been intensely debated over the past decade. Despite the fact that several stability results have been derived in the literature concerning neural networks in identification and control, most of them are local in nature and/or include fairly restrictive conditions under which the stability is valid. In contrast to these analytical results, the actual demonstration in applications and numerical simulations reports just the contrary: Neural networks indeed serve as powerful numerical computational units that are capable of very good approximations of nonlinear maps and provide complex functionalities of estimation, control, and optimization over a large region of operation. The goal of this project is to address this gap and develop global stability tools that are capable of explaining the true scope of operation of a neural network when used for nonlinear control. The main idea here is to directly address and exploit the distinguishing feature of nonlinear regression in neural networks and derive the underlying convergence and stability properties. Preliminary results in [I] show that it is possible to derive conditions under which global convergence takes place in identification problems using neural networks. The P.I. plans to derive training algorithms as well as conditions under which global system identification using neural networks as well as global stability using neural controllers can be derived. Various neural network structures including multi-layered perceptrons and radial basis functions will be examined. The applicability as well as limitations of gradient-like algorithms in these problems will be studied. All theoretical derivations will be complemented by simulation studies. The results from the proposed research will lead to fundamental advances in the analysis and design of complex dynamic systems in various engineering problems.***
0070039 Annaswamy在过去的十年里,神经网络在工程系统的识别和控制中的应用一直受到激烈的争论。 尽管在有关神经网络识别和控制的文献中已经得到了一些稳定性结果,但大多数结果都是局部的,并且/或者包括相当严格的条件,在这些条件下稳定性是有效的。 与这些分析结果相反,应用和数值模拟中的实际演示报告恰恰相反:神经网络确实是强大的数值计算单元,能够很好地近似非线性映射,并在大范围内提供复杂的估计,控制和优化功能。该项目的目标是解决这一差距,并开发全局稳定性工具,能够解释神经网络用于非线性控制时的真实操作范围。 这里的主要思想是直接处理和利用神经网络中非线性回归的显着特征,并推导出基本的收敛性和稳定性。文[1]的初步结果表明,在用神经网络进行辨识时,可以导出全局收敛的条件。 私家侦探导出训练算法的计划以及可以导出使用神经网络的全局系统识别以及使用神经控制器的全局稳定性的条件。 各种神经网络结构,包括多层感知器和径向基函数将被检查。 将研究类梯度算法在这些问题中的适用性和局限性。 所有理论推导都将通过模拟研究来补充。 从拟议的研究结果将导致在各种工程问题的复杂动态系统的分析和设计的根本性进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anuradha Annaswamy其他文献
A game-theoretic, market-based approach to extract flexibility from distributed energy resources
采用博弈论、基于市场的方法从分布式能源中获取灵活性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Vineet Jagadeesan Nair;Anuradha Annaswamy - 通讯作者:
Anuradha Annaswamy
Physics-informed Graph Neural Network for Dynamic Reconfiguration of power systems
- DOI:
10.1016/j.epsr.2024.110817 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Jules Authier;Rabab Haider;Anuradha Annaswamy;Florian Dörfler - 通讯作者:
Florian Dörfler
Anuradha Annaswamy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anuradha Annaswamy', 18)}}的其他基金
Travel Grant: 2022 IEEE CSS Workshop on Control for Societal-Scale Challenges
旅费补助:2022 年 IEEE CSS 社会规模挑战控制研讨会
- 批准号:
2230397 - 财政年份:2022
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
CPS: DFG Joint: Medium: Collaborative Research: Data-Driven Secure Holonic control and Optimization for the Networked CPS (aDaptioN)
CPS:DFG 联合:媒介:协作研究:网络 CPS 的数据驱动安全完整控制和优化 (aDaptioN)
- 批准号:
1932406 - 财政年份:2020
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
International Federation of Automatic Control (IFAC) Conference on Cyber-Physical & Human-Systems (CPHS 2016)
国际自动控制联合会 (IFAC) 网络物理会议
- 批准号:
1700582 - 财政年份:2017
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Spatially Continuous Modeling of Power System Oscillations with Renewable Energy Penetration
EAGER:协作研究:可再生能源渗透电力系统振荡的空间连续建模
- 批准号:
1745547 - 财政年份:2017
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
CPS: Breakthrough: Collaborative Research: . Transactive control of smart railway grid.
CPS:突破:协作研究:。
- 批准号:
1644877 - 财政年份:2017
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
EAGER/Collaborative Research:Bumpless Re-Engagement in Shared Control
EAGER/协作研究:共享控制中的无扰重新参与
- 批准号:
1549815 - 财政年份:2015
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: Hardening Network Infrastructures for Fast, Resilient, and Cost-Optimal Wide-Area Control of Power Systems
CPS:TTP 选项:协同:协作研究:强化网络基础设施,实现快速、弹性和成本最优的电力系统广域控制
- 批准号:
1544751 - 财政年份:2015
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
RIPS Type 2: Collaborative Research: Towards resilient computational models of electricity-gas ICI
RIPS 类型 2:协作研究:建立电力-燃气 ICI 的弹性计算模型
- 批准号:
1441301 - 财政年份:2014
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Co-Design of Multimodal CPS Architectures and Adaptive Controllers
CPS:媒介:协作研究:多模式 CPS 架构和自适应控制器的协同设计
- 批准号:
1135815 - 财政年份:2011
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
Control Configured Combustors: A Systems Framework for Active Control of Combustion Dynamics
控制配置的燃烧器:燃烧动力学主动控制的系统框架
- 批准号:
9713415 - 财政年份:1998
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Novel Human-Inspired Stability and Robustness Concepts for Human-Centred Robots and Biomedical Devices
以人为中心的机器人和生物医学设备的新颖的受人启发的稳定性和鲁棒性概念
- 批准号:
RGPIN-2022-05162 - 财政年份:2022
- 资助金额:
$ 22.28万 - 项目类别:
Discovery Grants Program - Individual
Stability and Robustness of Hippocampal Representations of Space
海马空间表示的稳定性和鲁棒性
- 批准号:
10701683 - 财政年份:2021
- 资助金额:
$ 22.28万 - 项目类别:
Stability and Robustness of Hippocampal Representations of Space
海马空间表示的稳定性和鲁棒性
- 批准号:
10208522 - 财政年份:2021
- 资助金额:
$ 22.28万 - 项目类别:
Stability and Robustness of Hippocampal Representations of Space
海马空间表示的稳定性和鲁棒性
- 批准号:
10463556 - 财政年份:2021
- 资助金额:
$ 22.28万 - 项目类别:
Stability and robustness of attractors of nonlinear infinite-dimensional systems with respect to disturbances
非线性无限维系统吸引子对扰动的稳定性和鲁棒性
- 批准号:
405685496 - 财政年份:2019
- 资助金额:
$ 22.28万 - 项目类别:
Research Grants
Study on HTS Coil with High Stability and Robustness for High Speed Aluminum Metal Melting Devices
高速铝金属熔炼装置用高稳定性、高鲁棒性高温超导线圈的研究
- 批准号:
19K04347 - 财政年份:2019
- 资助金额:
$ 22.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-Input Multi-Output Data-Driven Control with Stability and Robustness -FRIT Approach-
具有稳定性和鲁棒性的多输入多输出数据驱动控制-FRIT方法-
- 批准号:
25420432 - 财政年份:2013
- 资助金额:
$ 22.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A general framework for the stability and robustness of dynamical systems
动力系统稳定性和鲁棒性的通用框架
- 批准号:
FT110100746 - 财政年份:2012
- 资助金额:
$ 22.28万 - 项目类别:
ARC Future Fellowships
CIF: Small: Understanding Complexity in Markovian Interaction Networks: Self-Organization, Functional Stability, Robustness, and Evolutionary Behavior
CIF:小:理解马尔可夫交互网络的复杂性:自组织、功能稳定性、鲁棒性和进化行为
- 批准号:
1217213 - 财政年份:2012
- 资助金额:
$ 22.28万 - 项目类别:
Standard Grant
Design of synthetic microbial ecosystems and determination of the effect of 3D structure, metabolic differentiation, and directed reciprocity on their robustness and long term evolutionary stability
合成微生物生态系统的设计并确定 3D 结构、代谢分化和定向互惠对其鲁棒性和长期进化稳定性的影响
- 批准号:
257500 - 财政年份:2011
- 资助金额:
$ 22.28万 - 项目类别:
Studentship Programs