Intersection Theory for Non Intersectional Cycles
非相交循环的相交理论
基本信息
- 批准号:0070409
- 负责人:
- 金额:$ 7.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2005-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project the investigator studies the intersection of two cycles whose dimensions do not add up to the dimension of the ambient space. In previous studies of intersection theory this is the case that has been ignored, since in general these cycles do not meet (thus we call them non-intersectional cycles). The space of cycles is a big puzzle to us, and this non-intersectional case is a piece that is still missing from the puzzle. So in order to have a complete picture of space of cycles, one should also include non-intersectional cycles. The first case studied by the investigator was the linking case where the dimensions of cycles add up to the number that is one less than the dimension of the ambient space. The fundamental approach is that such an intersection theory should not only include the cycles that meet, but also those that do not meet. To accomplish this the investigator borrows a tool-Archimedean height pairing from Arakelov geometry (or to be precise, the Arithmetic intersection theory developed by Gillet and Soule), which is only defined for pairs of linking cycles that do not meet. In this direction the investigator has made significant progress: (1) He obtained formulas for the leading term of the asymptotics of Archimedean height pairing. (2) Investigating Mazur's incidence structure, he constructed an incidence divisor on the Chow variety. (3) Based on above two results, he gave a proof of Clemens' conjecture: generic quintic three folds admit only finitely many smooth rational curves of each degree. The plan is to further the understanding of this intersection theory that includes general non-intersectional cycles. The project is concentrated in (1) the study of incidence divisors, (2) the relation between the incidence equivalence and the Abel-Jacobi equivalence, (3) the application to a study of the relation between the Chow group and the Chow variety, (4) the application to a construction of Beilinson-Bloch filtration on the Chow group. One of the most fundamental problems in mathematics is the solving of algebraic equations. Once people it was realized that one could not always explicitly write down the solutions of equations, the paradigm changed into the mode of examining different types of questions such as: does a solution exist, if so, how many solutions are there, do the solution sets have additional structure? These are the fundamental questions in algebraic geometry. In order to answer them, mathematicians have developed varied techniques, one of which-intersection theory--studies he intersection of solution sets of two or more systems of equations. In this project, the investigator plans to develop a new method in intersection theory. The significance of this project is to investigate material that is less studied or completely untouched by the current techniques of intersection theory.
在这个项目中,研究者研究了两个循环的交集,它们的维度加起来不等于周围空间的维度。在以前的交叉理论研究中,这种情况被忽略了,因为通常这些循环不满足(因此我们称之为非交叉循环)。周期空间对我们来说是一个很大的谜题,而这个非相交的情况是这个谜题中仍然缺失的一部分。为了得到循环空间的完整图像,我们还应该包括非相交的循环。研究者研究的第一个案例是链接案例,其中循环的维度加起来比周围空间的维度少1。基本的方法是,这样的交集理论不仅应该包括相遇的循环,也应该包括那些不相遇的循环。为了完成这一任务,研究者借用了Arakelov几何中的工具-阿基米德高度配对(或者更准确地说,是由Gillet和Soule开发的算术相交理论),该理论仅定义为不满足的连接循环对。在这个方向上,研究者取得了显著的进展:(1)他得到了阿基米德高度对渐近的主导项的公式。(2)研究Mazur的发病率结构,他在Chow品种上构造了发病率因子。(3)在以上两个结果的基础上,他给出了克莱门斯猜想的证明:一般五次三折只允许每一次光滑有理曲线的有限多条。我们的计划是进一步理解这个包括一般非相交周期的相交理论。该项目集中在(1)研究关联除数;(2)研究关联等价与Abel-Jacobi等价之间的关系;(3)应用于研究Chow群与Chow品种之间的关系;(4)应用于构建Chow群上的Beilinson-Bloch滤波。数学中最基本的问题之一是代数方程的求解。一旦人们意识到人们不可能总是明确地写下方程的解,范式就变成了检验不同类型问题的模式,比如:一个解是否存在,如果存在,有多少个解,解集是否有附加结构?这些是代数几何中的基本问题。为了回答这些问题,数学家们开发了各种各样的技术,其中之一是交点理论——研究两个或多个方程组解集的交点。在这个项目中,研究者计划开发一种新的交叉理论方法。这个项目的意义在于研究当前交叉理论技术研究较少或完全未触及的材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bin Wang其他文献
A Retrospective Analysis: Development and Validation of a Nomogram Model for Predicating 30-day Mortality in ST-Segment Elevation Myocardial Infarction Patients
回顾性分析:预测 ST 段抬高型心肌梗死患者 30 天死亡率的列线图模型的开发和验证
- DOI:
10.21203/rs.2.24201/v1 - 发表时间:
2020 - 期刊:
- 影响因子:5.8
- 作者:
Bin Wang;Mao;Manzhen Ying;Cheng - 通讯作者:
Cheng
Improving AGC Performance of Coal-Fueled Thermal Generators Using Multi-MW Scale BESS: A Practical Application
使用多兆瓦规模 BESS 提高燃煤火力发电机的 AGC 性能:实际应用
- DOI:
10.1109/tsg.2016.2599579 - 发表时间:
2018-05 - 期刊:
- 影响因子:9.6
- 作者:
Xiaorong Xie;Yonghong Guo;Bin Wang;Yipeng Dong;Liufeng Mou;Fei Xue - 通讯作者:
Fei Xue
Constrained independent component analysis for hyperspectral unmixing
高光谱分解的约束独立分量分析
- DOI:
10.1109/igarss.2010.5648957 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
W. Xia;Bin Wang;Liming Zhang - 通讯作者:
Liming Zhang
Gamma-irradiation fluctuates the mRNA N6-methyladenosine (m6A) spectrum of bone marrow in hematopoietic injury
伽马射线照射使造血损伤中骨髓 mRNA N6-甲基腺苷 (m6A) 谱发生波动
- DOI:
10.1016/j.envpol.2021.117509 - 发表时间:
2021 - 期刊:
- 影响因子:8.9
- 作者:
Shuqin Zhang;Jiali Dong;Yuan Li;Huiwen Xiao;Yue Shang;Bin Wang;Zhiyuan Chen;Mengran Zhang;Saijun Fan;Ming Cui - 通讯作者:
Ming Cui
Mechanism analysis on controllable methanol quick combustion
可控甲醇快速燃烧机理分析
- DOI:
10.1016/j.apenergy.2017.08.177 - 发表时间:
2017-11 - 期刊:
- 影响因子:11.2
- 作者:
Guopeng Han;Anren Yao;Chunde Yao;Taoyang Wu;Bin Wang;Hongyuan Wei - 通讯作者:
Hongyuan Wei
Bin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bin Wang', 18)}}的其他基金
Collaborative Research: Promoting Lithium Sulfides Redox Cycle via Atomically Dispersed Active Sites for Batteries
合作研究:通过电池的原子分散活性位点促进硫化锂氧化还原循环
- 批准号:
2129982 - 财政年份:2021
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Diversity of Tropical Intraseasonal Oscillation
热带季节内振荡的多样性
- 批准号:
2025057 - 财政年份:2020
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Understanding Essential Dynamics and Predictability of Madden-Julian Oscillation (MJO)
了解马登-朱利安振荡 (MJO) 的基本动力学和可预测性
- 批准号:
1540783 - 财政年份:2015
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Dynamics of the Boreal Summer Intraseasonal Oscillation: Multiscale Interactions
北方夏季季节内振荡的动力学:多尺度相互作用
- 批准号:
1005599 - 财政年份:2010
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Evolvable wireless laboratory design and implementation for enhancing undergraduate wireless engineering education
增强本科生无线工程教育的可演化无线实验室设计与实施
- 批准号:
0737297 - 财政年份:2008
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
CRI: IAD Instrumentation of a Measurement and Test System for Open Spectrum Wireless Communication and Networking
CRI:用于开放频谱无线通信和网络的测量和测试系统的 IAD 仪器
- 批准号:
0708469 - 财政年份:2007
- 资助金额:
$ 7.27万 - 项目类别:
Continuing Grant
Dynamics and Moist Thermodynamics of the Boreal Summer Intraseasonal Oscillation
北方夏季季节内振荡的动力学和湿润热力学
- 批准号:
0647995 - 财政年份:2007
- 资助金额:
$ 7.27万 - 项目类别:
Continuing Grant
CRI: Instrumentation of a Hierarchical Wireless Sensor Network Test-bed for Research and Education
CRI:用于研究和教育的分层无线传感器网络测试台的仪器
- 批准号:
0454170 - 财政年份:2005
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Dynamics of the Boreal Summer Intraseasonal Oscillation
北方夏季季节内振荡的动力学
- 批准号:
0329531 - 财政年份:2003
- 资助金额:
$ 7.27万 - 项目类别:
Continuing Grant
Dynamics of the Boreal Summer Intraseasonal Oscillation
北方夏季季节内振荡的动力学
- 批准号:
0073023 - 财政年份:2000
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 7.27万 - 项目类别:
Research Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
- 批准号:
2415034 - 财政年份:2024
- 资助金额:
$ 7.27万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 7.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Non-Abelian Hodge Theory and Transcendence
非阿贝尔霍奇理论与超越
- 批准号:
2401383 - 财政年份:2024
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
- 批准号:
MR/Y003926/1 - 财政年份:2024
- 资助金额:
$ 7.27万 - 项目类别:
Fellowship
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 7.27万 - 项目类别:
Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
$ 7.27万 - 项目类别:
Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 7.27万 - 项目类别:
Standard Grant
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 7.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists