Operator inequalities, reproducing kernels, and invariant subspaces

算子不等式、再现核和不变子空间

基本信息

  • 批准号:
    0070451
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-15 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

AbstractRichter/SundbergRichter and Sundberg will continue their study of linear operators on Hilbert spaces modelled by multiplication operators on spaces of analytic functions, in both one and several variables. The study of such operators has a long history and has led to much progress in operator theory and complex analysis. For instance the unilateral shift, which is modelled by multiplication by z on the Hardy space of the unit disc, has been used to enhance our knowledge of contraction operators. Other classes of operators characterized by operator inequalities may be studied using operators modelled by multiplication by z on other Hilbert spaces of analytic functions. Such spaces have associated with them evaluation functionals called reproducing kernels, and there is an intimate connection between properties of such a kernel and properties of the multiplication operators on the corresponding space. An important classical example where this correspondence has been exploited is Nevanlinna-Pick interpolation. Recent work of several researchers has extended the applicability of the ideas behind Nevanlinna-Pick interpolation and introduced other types of inequalities on operators and reproducing kernels that seem to be very fruitful. Richter and Sundberg will investigate the connection between operator inequalities, reproducing kernels, and the structure of the lattice of invariant subspaces of multiplication operators. The proposed work involves ideas and problems from several areas of pure and applied mathematics. Operator Theory, which may be thought of as an infinite dimensional version of linear algebra, grew out of ideas used to study certain partial differential equations arising in physics in the 1800's, and became increasingly important with the advent of Quantum Mechanics in the twentieth century. Complex Analysis is a subject with a long and distinguished history, and remains a very active and broad area of research. These two areas have had a very fruitful interaction throughout this century, owing to the fact that some interesting and useful operators can be modelled by natural operations on spaces of analytic functions. At least since the 1960's it has been realized that a series of related results concerning certain of these operators are of importance in the study of Control Theory, an area of importance in electrical engineering and other practical applications. Among these results are the Beurling-Lax Theorem on invariant subspaces, the Nevanlinna-Pick Interpolation Theorem, and its close relative the Commutant Lifting Theorem. Work by a number of researchers since the 1980's has shown that the circle of ideas concerned with these results are applicable to a much wider class of objects than had previously been realized. This has resulted in a much improved understanding of the underlying mathematical systems
Richter和Sundberg将继续他们的研究线性算子的希尔伯特空间模拟乘法算子空间的解析函数,在一个和几个变量。对这类算子的研究有着悠久的历史,并在算子理论和复分析方面取得了很大的进展。例如,单边移位,这是仿照乘以z上的哈代空间的单位盘,已被用来提高我们的知识的收缩运营商。其他类型的算子的特点是算子不等式可以研究使用的运营商的乘法由z建模的其他希尔伯特空间的解析函数。这样的空间与它们相关联的评价泛函称为再生核,并且这样的核的性质与相应空间上的乘法算子的性质之间存在密切联系。一个重要的经典例子,这种对应关系已被利用是Nevanlinna-Pick插值。最近几个研究人员的工作扩展了Nevanlinna-Pick插值背后的思想的适用性,并引入了其他类型的算子和再生核的不等式,这些不等式似乎非常富有成效。Richter和Sundberg将研究算子不等式、再生核和乘法算子的不变子空间格的结构之间的联系。 拟议的工作涉及的想法和问题,从几个领域的纯数学和应用数学。算子理论,这可能被认为是一个无限维版本的线性代数,成长的想法用来研究某些偏微分方程在物理学中出现在1800年,并成为日益重要的量子力学的出现在二十世纪。 复变函数分析是一个有着悠久而杰出历史的学科,并且仍然是一个非常活跃和广泛的研究领域。 这两个领域有一个非常富有成效的互动在整个世纪,由于事实上,一些有趣的和有用的运营商可以模拟自然操作空间的解析函数。至少从20世纪60年代以来,人们已经认识到,关于某些算子的一系列相关结果在控制理论的研究中是重要的,控制理论是电气工程和其他实际应用中的一个重要领域。这些结果中有Beurling-Lax定理 在不变子空间上,Nevanlinna-Pick插值定理,及其近亲交换提升定理。自20世纪80年代以来,许多研究人员的工作表明,与这些结果有关的思想圈适用于比以前认识到的更广泛的对象。这导致了对基本数学系统的理解大大提高

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Richter其他文献

Formalizing Integration Theory with an Application to Probabilistic Algorithms
  • DOI:
    10.1007/978-3-540-30142-4_20
  • 发表时间:
    2004-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefan Richter
  • 通讯作者:
    Stefan Richter
Safety and Clinical Relevance of Acute Vasodilator Testing in Patients With HFpEF
  • DOI:
    10.1378/chest.1390142
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nadine Al-Naamani;Stefan Richter;Ioana Preston;Nicholas Hill;Kari Roberts
  • 通讯作者:
    Kari Roberts
A Multi-resolution Approach to the Simulation of Protein Complexes in a Membrane Bilayer
模拟双层膜中蛋白质复合物的多分辨率方法
Inhalative pre-treatment of donor lungs using the aerosolized prostacyclin analog iloprost ameliorates reperfusion injury.
使用雾化的前列环素类似物伊洛前列素对供体肺进行吸入预处理可改善再灌注损伤。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Wittwer;U. Franke;M. Ochs;T. Sandhaus;A. Schuette;Stefan Richter;Niels Dreyer;L. Knudsen;T. Müller;H. Schubert;J. Richter;T. Wahlers
  • 通讯作者:
    T. Wahlers
A comparison of adaptive radix trees and hash tables
自适应基数树和哈希表的比较

Stefan Richter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefan Richter', 18)}}的其他基金

Southeastern Analysis Meeting 2017
2017年东南分析会议
  • 批准号:
    1700229
  • 财政年份:
    2017
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Hilbert Function Spaces 2017
希尔伯特函数空间 2017
  • 批准号:
    1700231
  • 财政年份:
    2017
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
A Conference on Hilbert Function Spaces
希尔伯特函数空间会议
  • 批准号:
    1265510
  • 财政年份:
    2013
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Operator Theory and Function Theory for the unit ball of C^d
C^d 单位球的算子理论和函数理论
  • 批准号:
    0901642
  • 财政年份:
    2009
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Southeastern Analysis Meeting
东南分析会议
  • 批准号:
    0650525
  • 财政年份:
    2007
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Analysis on spaces of analytic functions
解析函数空间的分析
  • 批准号:
    0556051
  • 财政年份:
    2006
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing grant
Southeastern Analysis Meeting
东南分析会议
  • 批准号:
    0456544
  • 财政年份:
    2005
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Invariant Subspaces in Spaces of Analytic Functions
解析函数空间中的不变子空间
  • 批准号:
    0245384
  • 财政年份:
    2003
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing grant
Invariant Subspaces in Bergman and Dirichlet Spaces
Bergman 和 Dirichlet 空间中的不变子空间
  • 批准号:
    9706905
  • 财政年份:
    1997
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Operators on Dirichlet-Type Spaces
数学科学:狄利克雷型空间上的运算符
  • 批准号:
    9101660
  • 财政年份:
    1991
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing grant

相似海外基金

Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
  • 批准号:
    AH/Z505559/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
  • 批准号:
    2875399
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Studentship
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
  • 批准号:
    ES/Z502455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
  • 批准号:
    ES/Z502753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
  • 批准号:
    AH/Z505419/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
  • 批准号:
    10092240
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
  • 批准号:
    AH/Z505389/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
  • 批准号:
    AH/Z505432/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了