Analysis on spaces of analytic functions
解析函数空间的分析
基本信息
- 批准号:0556051
- 负责人:
- 金额:$ 23.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Richter and Sundberg will continue their study of algebras of bounded analytic functions acting as multiplication operators on Banach or Hilbert spaces of analytic functions. For this project their main goal will be to extend current knowledge of invariant subspaces, cyclic vectors, and zero sets of Bergman, Dirichlet and related spaces in one variable, as well as of the Drury-Arveson-Hardy space on the unit ball of several complex variables.The study of spaces of analytic functions has a long and rich history as a meeting ground and source of ideas from a wide range of areas in both Pure and Applied Mathematics such as Complex Analysis, Harmonic Analysis, Operator Theory, Functional Analysis, Control theory, and Partial Differential Equations. Operator theory has its roots in the work on Partial Differential Equations of Fredholm and Hilbert in the late nineteenth and early twentieth centuries. The study of spaces of analytic functions has its origins in the work on the classical Hardy spaces by Hardy, Fischer, and the Riesz brothers, among others, in the first half of the twentieth century. The two areas met in the 1940's in the work of A. Beurling on the unilateral shift, which yielded a complete structure theory of an important infinite dimensional operator using Hardy-space techniques. The generalization of Beurling's results to arbitrary multiplicity shifts together with the Sz.Nagy dilation theorem is the basis for a model theory for contraction operators on Hilbert spaces. Thus, up to scaling, every bounded linear operator on a separable Hilbert space can be modeled using a semi-invariant subspace of a vector-valued Hardy space. As many naturally occurring processes can be modeled by use of such linear operators, this has applications that can be felt throughout science. More research is needed and is being done to clarify the model theory. In particular, there has been a large effort devoted to extending the ideas developed in the study of the Hardy spaces to other spaces of analytic functions. The current work of Richter and Sundberg is in this area.
里希特和桑德伯格将继续他们的研究代数有界解析函数作为乘法算子的巴拿赫或希尔伯特空间的解析函数。对于这个项目,他们的主要目标将是扩展不变子空间,循环向量和零集的Bergman,Dirichlet和相关空间在一个变量,以及德鲁里-阿维森多复变量单位球上的哈代空间。解析函数空间的研究有着悠久而丰富的历史,它是纯粹和非纯粹领域广泛思想的交汇地和源泉。应用数学,如复分析,调和分析,算子理论,泛函分析,控制理论和偏微分方程。算子理论起源于Fredholm和Hilbert在19世纪末和20世纪初对偏微分方程的研究。解析函数空间的研究起源于世纪上半叶哈代、费舍尔和Riesz兄弟对经典哈代空间的研究。这两个领域在20世纪40年代的A. Beurling的单边移位,这产生了一个完整的结构理论的一个重要的无限维运营商使用哈代空间技术。将Beurling的结果推广到任意重数移位以及Sz.Nagy膨胀定理是Hilbert空间上压缩算子的模型理论的基础。因此,在尺度上,可分希尔伯特空间上的每一个有界线性算子都可以用向量值哈代空间的半不变子空间来建模。由于许多自然发生的过程可以通过使用这样的线性算子来建模,这在整个科学中都有应用。需要更多的研究,并正在做澄清模型理论。特别是,一直有大量的努力致力于扩大思想发展的研究哈代空间的其他空间的解析函数。Richter和Sundberg目前的工作就是在这个领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Richter其他文献
Safety and Clinical Relevance of Acute Vasodilator Testing in Patients With HFpEF
- DOI:
10.1378/chest.1390142 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:
- 作者:
Nadine Al-Naamani;Stefan Richter;Ioana Preston;Nicholas Hill;Kari Roberts - 通讯作者:
Kari Roberts
Formalizing Integration Theory with an Application to Probabilistic Algorithms
- DOI:
10.1007/978-3-540-30142-4_20 - 发表时间:
2004-09 - 期刊:
- 影响因子:0
- 作者:
Stefan Richter - 通讯作者:
Stefan Richter
A Multi-resolution Approach to the Simulation of Protein Complexes in a Membrane Bilayer
模拟双层膜中蛋白质复合物的多分辨率方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Goutam Mukherjee;Goutam Mukherjee;Prajwal P. Nandekar;Prajwal P. Nandekar;G. Mustafa;Stefan Richter;R. Wade;R. Wade;R. Wade - 通讯作者:
R. Wade
Inhalative pre-treatment of donor lungs using the aerosolized prostacyclin analog iloprost ameliorates reperfusion injury.
使用雾化的前列环素类似物伊洛前列素对供体肺进行吸入预处理可改善再灌注损伤。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
T. Wittwer;U. Franke;M. Ochs;T. Sandhaus;A. Schuette;Stefan Richter;Niels Dreyer;L. Knudsen;T. Müller;H. Schubert;J. Richter;T. Wahlers - 通讯作者:
T. Wahlers
A comparison of adaptive radix trees and hash tables
自适应基数树和哈希表的比较
- DOI:
10.1109/icde.2015.7113370 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
V. Álvarez;Stefan Richter;Xiao Chen;J. Dittrich - 通讯作者:
J. Dittrich
Stefan Richter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Richter', 18)}}的其他基金
A Conference on Hilbert Function Spaces
希尔伯特函数空间会议
- 批准号:
1265510 - 财政年份:2013
- 资助金额:
$ 23.91万 - 项目类别:
Standard Grant
Operator Theory and Function Theory for the unit ball of C^d
C^d 单位球的算子理论和函数理论
- 批准号:
0901642 - 财政年份:2009
- 资助金额:
$ 23.91万 - 项目类别:
Continuing Grant
Invariant Subspaces in Spaces of Analytic Functions
解析函数空间中的不变子空间
- 批准号:
0245384 - 财政年份:2003
- 资助金额:
$ 23.91万 - 项目类别:
Continuing grant
Operator inequalities, reproducing kernels, and invariant subspaces
算子不等式、再现核和不变子空间
- 批准号:
0070451 - 财政年份:2000
- 资助金额:
$ 23.91万 - 项目类别:
Continuing grant
Invariant Subspaces in Bergman and Dirichlet Spaces
Bergman 和 Dirichlet 空间中的不变子空间
- 批准号:
9706905 - 财政年份:1997
- 资助金额:
$ 23.91万 - 项目类别:
Continuing grant
Mathematical Sciences: Operators on Dirichlet-Type Spaces
数学科学:狄利克雷型空间上的运算符
- 批准号:
9101660 - 财政年份:1991
- 资助金额:
$ 23.91万 - 项目类别:
Continuing grant
相似国自然基金
Bergman空间上的Toeplitz算子及Hankel算子的性质
- 批准号:11126061
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Harmonic analysis and spaces of analytic functions in several variables
调和分析和多变量解析函数空间
- 批准号:
1363239 - 财政年份:2014
- 资助金额:
$ 23.91万 - 项目类别:
Standard Grant
Analysis of structures of infinite dimensional Teichmuller spaces and complex analytic moduli spaces
无限维Teichmuller空间和复解析模空间的结构分析
- 批准号:
20740072 - 财政年份:2008
- 资助金额:
$ 23.91万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis and Geometry of the Teichmuller Spaces
Teichmuller空间的分析和几何
- 批准号:
13640164 - 财政年份:2001
- 资助金额:
$ 23.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic Analysis for Singularities of Solutions to Nonlinear Partial Differential Equations
非线性偏微分方程解奇异性的渐近分析
- 批准号:
11440057 - 财政年份:1999
- 资助金额:
$ 23.91万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Heat Kernal Analysis and Analytic Number Theory on Symmetric Spaces, Calabi-Yau Varieties and Moduli Spaces
对称空间、Calabi-Yau簇和模空间的热核分析和解析数论
- 批准号:
9796336 - 财政年份:1997
- 资助金额:
$ 23.91万 - 项目类别:
Continuing Grant
Analysis in Spaces of Analytic Functions
解析函数空间中的分析
- 批准号:
9705207 - 财政年份:1997
- 资助金额:
$ 23.91万 - 项目类别:
Standard Grant
Heat Kernal Analysis and Analytic Number Theory on Symmetric Spaces, Calabi-Yau Varieties and Moduli Spaces
对称空间、Calabi-Yau簇和模空间的热核分析和解析数论
- 批准号:
9622535 - 财政年份:1996
- 资助金额:
$ 23.91万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analysis in Spaces of Analytic and Harmonic Functions
数学科学:解析函数和调和函数空间的分析
- 批准号:
9424417 - 财政年份:1995
- 资助金额:
$ 23.91万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analysis in Spaces of Analytic and Harmonic Functions
数学科学:解析函数和调和函数空间的分析
- 批准号:
9123310 - 财政年份:1992
- 资助金额:
$ 23.91万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analysis on Spaces of Analytic Functions
数学科学:解析函数空间的分析
- 批准号:
8800823 - 财政年份:1988
- 资助金额:
$ 23.91万 - 项目类别:
Continuing Grant