Intertwining Liftings and Young Tableaux Related Problems
交织在一起的提升和年轻的画面相关问题
基本信息
- 批准号:0070588
- 负责人:
- 金额:$ 7.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract: This project is to try to obtain a better understanding of the structure of bounded linear operators acting on a complex, separable, infinite dimensional Hilbert space. The principal investigator plans to continue her research on the theory of commutant lifting theorem, including the numerical aspect and the generalization to the multioperator setting. At the same time, the principal investigator will continue her research on sums of eigenvalues of self-adjoint operators, and its connections with intersection theory in algebraic geometry, Young tableaux, and representation theory. This project is to try to obtain a better understanding of the theory of linearoperators acting on Hilbert space (``operator theory''). There are two main research areas that this proposal will focus on. One is in the area of the theory of commutant lifting thorem, which has proven to be useful in control theory in engineering. The other one is on a problem about eigenvalues of sums of (self-adjoint) operators. This problem originated in a celebrated paper of Weyl in 1912 while he was studying partial differential equations. Only recently that there was a significant break through and the solution depends on some very deep theorems in algebraic geometry. It is our hope that this project will bring some insight into the problem from the operator theory point of view. Furthermore we want to extend the existing theory to a setting that can be applied to quantum physics.
摘要:本课题旨在更好地理解作用于复、可分离、无限维Hilbert空间上的有界线性算子的结构。首席研究员计划继续对交换子提升定理的理论进行研究,包括数值方面和对多算子设置的推广。同时,她将继续研究自伴随算子的特征值和及其与代数几何中的交点理论、Young表和表示理论的联系。这个项目是为了更好地理解作用于希尔伯特空间的线性算子理论(“算子理论”)。本提案将重点关注两个主要研究领域。一个是在换向举升定理的理论领域,它已被证明在工程控制理论中是有用的。另一个是关于(自伴随)算子和的特征值问题。这个问题起源于1912年魏尔研究偏微分方程时发表的一篇著名论文。直到最近才有了重大突破,其解依赖于代数几何中一些非常深奥的定理。我们希望这个项目能从算子理论的角度对这个问题有所了解。此外,我们希望将现有的理论扩展到一个可以应用于量子物理的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wing Suet Li其他文献
On Consistent Operators and Reflexivity
- DOI:
10.1007/s00020-011-1894-z - 发表时间:
2011-07-09 - 期刊:
- 影响因子:0.900
- 作者:
Edward A. Azoff;Wing Suet Li;Mostafa Mbekhta;Marek Ptak - 通讯作者:
Marek Ptak
On polynomially bounded operators.
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
Wing Suet Li - 通讯作者:
Wing Suet Li
A Question About Invariant Subspaces and Factorization
- DOI:
10.1007/s11785-021-01183-7 - 发表时间:
2022-03-05 - 期刊:
- 影响因子:0.800
- 作者:
Hari Bercovici;Wing Suet Li - 通讯作者:
Wing Suet Li
Invariant subspaces of nilpotent operators and LR-sequences
- DOI:
10.1007/bf01236472 - 发表时间:
1999-06-01 - 期刊:
- 影响因子:0.900
- 作者:
Wing Suet Li;Vladimír Müller - 通讯作者:
Vladimír Müller
The enumeration of extreme rigid honeycombs
- DOI:
10.1007/s10801-022-01153-y - 发表时间:
2022-08-16 - 期刊:
- 影响因子:0.900
- 作者:
Hari Bercovici;Wing Suet Li - 通讯作者:
Wing Suet Li
Wing Suet Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wing Suet Li', 18)}}的其他基金
The 34th Southeastern Analysis Meeting
第34届东南分析会议
- 批准号:
1800752 - 财政年份:2018
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Eigenvalue Inequalities, Intersection of Schubert Varieties, and Related Problems
特征值不等式、舒伯特簇的交集及相关问题
- 批准号:
1101162 - 财政年份:2011
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
The Young Analysts Meeting of the Southeast and the Southeastern Analysis Meeting
东南青年分析师会议暨东南分析会议
- 批准号:
0324071 - 财政年份:2003
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
The Young Analysts Meeting of the Southeast and the Southeastern Analysis Meeting
东南青年分析师会议暨东南分析会议
- 批准号:
9970541 - 财政年份:2000
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operators on Hillbert Space
数学科学:希尔伯特空间上的算子
- 批准号:
9623197 - 财政年份:1996
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Dual Algebras of Operators and H-Infinity Control Theory
数学科学:算子对偶代数和H-无穷控制理论
- 批准号:
9303702 - 财政年份:1993
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Innovations in Markov Chains: Metrics, Duality and Liftings
职业:马尔可夫链的创新:度量、对偶性和提升
- 批准号:
1150281 - 财政年份:2012
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Liftings of automorphic representations and L-functions
自守表示和 L 函数的提升
- 批准号:
24840033 - 财政年份:2012
- 资助金额:
$ 7.9万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854893 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854944 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854849 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854844 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854909 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854877 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854897 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Square Integrable Automorphic Forms: Liftings and Arthur's Conjecture
平方可积自守形式:提升和亚瑟猜想
- 批准号:
0500781 - 财政年份:2005
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant