Eigenvalue Inequalities, Intersection of Schubert Varieties, and Related Problems

特征值不等式、舒伯特簇的交集及相关问题

基本信息

  • 批准号:
    1101162
  • 负责人:
  • 金额:
    $ 16.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

This project will continue the study on various problems naturally arise in operator theory and operator algebra related to the Horn's Conjecture, and their relationships to representation theory, combinatorics, and algebraic geometry. The Horn's Conjecture was originally formulated for the eigenvalues of sums of self-adjoint matrices and had shown many important connections with algebraic geometry and representation theory. So far, there were successful generalizations to the infinite dimensional settings, including compact operators on infinite dimensional Hilbert spaces and elements in finite von Neumann algebras. This work also revealed some intricate structure properties on the lattices of invariant subspaces of certain operators and properties on the algebra. This project will help to gain insights in the structure of finite von Neumann algebras and may bring new directions to representation theory and algebraic geometry. Horn's Conjecture was formulated as a problem in linear algebra and it has natural analogues in the infinite dimensional setting and in the von Neumann algebra setting. The tools involved in solving the original Horn's Conjecture were coming from algebraic geometry, representation theory, and combinatorics. The recent advances make a compelling case to continue the investigator's collaborative effort. It is also hopeful that the insights developed here may result in new discoveries, directions and problems for algebraic geometry and representation theory. The investigator is also the ADVANCE Professor of College of Sciences at Georgia Tech, working towards a more family friendly working environment for all faculty, in particular for women and as a role model and advocate for junior women faculty in the college. She plans to continue her work providing networking opportunities and encouraging discussions among women mathematicians, especially junior women mathematicians.
本课题将继续研究与霍恩猜想相关的算子理论和算子代数中自然产生的各种问题,以及它们与表示论、组合学和代数几何的关系。霍恩猜想最初是针对自伴矩阵之和的特征值而提出的,它与代数几何和表示论有许多重要的联系。到目前为止,已经有成功的推广到无限维的情形,包括无限维Hilbert空间上的紧算子和有限vonNeumann代数中的元素。这一工作也揭示了某些算子的不变子空间格的一些复杂结构性质和代数性质。这个项目将有助于获得有限冯诺依曼代数的结构的见解,并可能带来新的方向表示理论和代数几何。 霍恩猜想是线性代数中的一个问题,它在无限维和冯诺依曼代数中有着自然的相似之处。解决霍恩猜想的工具来自代数几何、表示论和组合学。最近的进展使一个令人信服的情况下,继续研究人员的合作努力。这也是有希望的,在这里发展的见解可能会导致新的发现,方向和代数几何和表示论的问题。 调查员也是科学学院在格鲁吉亚理工学院的先进教授,朝着一个更家庭友好的工作环境,为所有教师,特别是妇女和作为一个榜样,倡导青年女教师在学院工作。 她计划继续她的工作,提供网络的机会,并鼓励妇女数学家,特别是初级妇女数学家之间的讨论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wing Suet Li其他文献

On Consistent Operators and Reflexivity
  • DOI:
    10.1007/s00020-011-1894-z
  • 发表时间:
    2011-07-09
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Edward A. Azoff;Wing Suet Li;Mostafa Mbekhta;Marek Ptak
  • 通讯作者:
    Marek Ptak
On polynomially bounded operators.
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wing Suet Li
  • 通讯作者:
    Wing Suet Li
Invariant subspaces of nilpotent operators and LR-sequences
A Question About Invariant Subspaces and Factorization
  • DOI:
    10.1007/s11785-021-01183-7
  • 发表时间:
    2022-03-05
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Hari Bercovici;Wing Suet Li
  • 通讯作者:
    Wing Suet Li
A near-factorization theorem for integrable functions

Wing Suet Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wing Suet Li', 18)}}的其他基金

The 34th Southeastern Analysis Meeting
第34届东南分析会议
  • 批准号:
    1800752
  • 财政年份:
    2018
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Standard Grant
Horn's Conjecture and related Problems
霍恩猜想及相关问题
  • 批准号:
    0800629
  • 财政年份:
    2008
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Standard Grant
The Young Analysts Meeting of the Southeast and the Southeastern Analysis Meeting
东南青年分析师会议暨东南分析会议
  • 批准号:
    0324071
  • 财政年份:
    2003
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Standard Grant
Intertwining Liftings and Young Tableaux Related Problems
交织在一起的提升和年轻的画面相关问题
  • 批准号:
    0070588
  • 财政年份:
    2000
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Standard Grant
The Young Analysts Meeting of the Southeast and the Southeastern Analysis Meeting
东南青年分析师会议暨东南分析会议
  • 批准号:
    9970541
  • 财政年份:
    2000
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Operators on Hillbert Space
数学科学:希尔伯特空间上的算子
  • 批准号:
    9623197
  • 财政年份:
    1996
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Dual Algebras of Operators and H-Infinity Control Theory
数学科学:算子对偶代数和H-无穷控制理论
  • 批准号:
    9303702
  • 财政年份:
    1993
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Standard Grant

相似海外基金

Rural Co-Design and Collaboration: Maximising Rural Community Assets to Reduce Place-Based Health Inequalities
农村共同设计与协作:最大化农村社区资产以减少基于地点的健康不平等
  • 批准号:
    AH/Z505559/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
What are the implications of health inequalities such as parental education and household income in BAME 11-16 year old's mental health in Wales
父母教育和家庭收入等健康不平等对威尔士 BAME 11-16 岁心理健康有何影响
  • 批准号:
    2875399
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Studentship
Analysing Earnings from Creative Education and Creative Work: Decomposing University, Industry and Social Inequalities.
分析创意教育和创意工作的收入:分解大学、工业和社会不平等。
  • 批准号:
    ES/Z502455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Fellowship
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
  • 批准号:
    ES/Z502753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Research Grant
National Partnership to tackle Health Inequalities in Coastal Communities
国家伙伴关系解决沿海社区的健康不平等问题
  • 批准号:
    AH/Z505419/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Research Grant
ReHousIn - Contextualized pathways to reduce housing inequalities in the green and digital transition
ReHousIn - 减少绿色和数字转型中住房不平等的情境化途径
  • 批准号:
    10092240
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    EU-Funded
Making Every Community Asset Count: Improving Health and Reducing Inequalities for People Experiencing Homelessness
让每一项社区资产发挥作用:改善无家可归者的健康并减少不平等
  • 批准号:
    AH/Z505389/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Research Grant
Tackling Health Inequalities with and for the Deaf BSL-Using Communities in Wales
与威尔士使用 BSL 的聋人社区一起解决健康不平等问题
  • 批准号:
    AH/Z505432/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Research Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了