Brownian Motion and Models of Fragmentation and Coalescence
布朗运动以及碎裂和聚结模型
基本信息
- 批准号:0071448
- 负责人:
- 金额:$ 35.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-01 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Pitman and Yor are continuing their work on explicit descriptions of the distribution of various functionals of Brownian motion and related processes such as Brownian and Bessel bridges, meanders and excursions, and the development of novel methods for obtaining such descriptions. Stimulus for obtaining the exact distributions of ever more complicated Brownian functionals, and understanding various identities, has been provided by applications of Brownian excursion and Brownian bridge to the asymptotics of random combinatorial objects such as trees and mappings, connections with the theory of random partitions and random discrete distributions, and the applications of Brownian motion in mathematical finance. While a great number of explicit formulae are now known there remain many mysterious distributional coincidences of the kind which have in the past provided stimulus for the development of novel techniques and deeper understanding through such devices as path transformations and decompositions.This award will continue present lines of research into stochastic processes, particularly Brownian motion, random partitions, and coalescent processes. Brownian motion provides the foundation of the modern theory of continuous time random processes with continuous paths, and has applications in fields as diverse as physics and mathematical finance. Random partitions find applications to combinatorics, physics and genetics. Coalescent processes model random phenomena involving irreversible clustering or aggregation in a wide variety of contexts. This is fundamental research into the mathematical structure of stochastic processes. Progress in this direction enhances our understanding of these processes, and has potential for application in numerous fields of knowledge.
皮特曼和尤尔正在继续他们的工作,明确描述布朗运动和相关过程的各种功能的分布,如布朗和贝塞尔桥,弯曲和短途,并开发获得这种描述的新方法。布朗偏移和布朗桥在随机组合对象(如树和映射)的渐近性中的应用,与随机分区和随机离散分布理论的联系,以及布朗运动在数学金融中的应用,为获得更复杂的布朗泛函的精确分布和理解各种恒等提供了刺激。虽然现在已知了大量的显式公式,但仍然存在许多神秘的分布巧合,这些巧合在过去刺激了新技术的发展,并通过路径变换和分解等手段对其进行了更深入的理解。该奖项将继续研究随机过程,特别是布朗运动、随机分区和凝聚过程。布朗运动为具有连续路径的连续时间随机过程的现代理论提供了基础,并在物理和数学金融等各个领域都有应用。随机分区在组合学、物理学和遗传学中都有应用。聚结过程模拟随机现象,包括不可逆聚类或聚集在各种情况下。这是对随机过程数学结构的基础研究。这方面的进展增强了我们对这些过程的理解,并有可能应用于许多知识领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Pitman其他文献
James Pitman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Pitman', 18)}}的其他基金
CDI-Type II: Collaborative Research: Bibliographic Knowledge Network
CDI-类型 II:协作研究:书目知识网络
- 批准号:
0835773 - 财政年份:2008
- 资助金额:
$ 35.6万 - 项目类别:
Standard Grant
Brownian Motion and Combinatorial Stochastic Processes
布朗运动和组合随机过程
- 批准号:
0405779 - 财政年份:2004
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Brownian Motion and Random Partitions
布朗运动和随机分区
- 批准号:
9703691 - 财政年份:1997
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Brownian Motion & Random Partitions
数学科学:布朗运动
- 批准号:
9404345 - 财政年份:1994
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Brownian Motion and Related Stochastic Processes
数学科学:布朗运动和相关随机过程
- 批准号:
9107531 - 财政年份:1991
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
- 批准号:
8801808 - 财政年份:1988
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
- 批准号:
8502930 - 财政年份:1985
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Markov Processes
数学科学:马尔可夫过程
- 批准号:
8202552 - 财政年份:1982
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Mathematical Statistics Including Related Probability and Computer Science
数理统计,包括相关概率和计算机科学
- 批准号:
7825301 - 财政年份:1979
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
相似海外基金
Estimation of long-period earthquake ground motion using subsurface velocity models from waveform inversions of earthquake records in major basins in Japan
利用日本主要盆地地震记录波形反演的地下速度模型估算长周期地震地面运动
- 批准号:
22H00234 - 财政年份:2022
- 资助金额:
$ 35.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical models and their verifications for fully nonlinear and unsteady motion of ocean waves
海浪全非线性非定常运动数学模型及其验证
- 批准号:
22H01136 - 财政年份:2022
- 资助金额:
$ 35.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How well do models of particle motion represent industrial reality?
粒子运动模型在多大程度上代表了工业现实?
- 批准号:
2433815 - 财政年份:2020
- 资助金额:
$ 35.6万 - 项目类别:
Studentship
Collaborative Research: Do improved absolute plate motion models based on Cretaceous Western Pacific seamounts relate Louisville to Ontong-Java?
合作研究:基于白垩纪西太平洋海山的改进绝对板块运动模型是否将路易斯维尔与翁通爪哇联系起来?
- 批准号:
1912934 - 财政年份:2020
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Collaborative Research: Do improved absolute plate motion models based on Cretaceous Western Pacific seamounts relate Louisville to Ontong-Java?
合作研究:基于白垩纪西太平洋海山的改进绝对板块运动模型是否将路易斯维尔与翁通爪哇联系起来?
- 批准号:
1912931 - 财政年份:2020
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Collaborative Research: Do improved absolute plate motion models based on Cretaceous Western Pacific seamounts relate Louisville to Ontong-Java?
合作研究:基于白垩纪西太平洋海山的改进绝对板块运动模型是否将路易斯维尔与翁通爪哇联系起来?
- 批准号:
1912932 - 财政年份:2020
- 资助金额:
$ 35.6万 - 项目类别:
Continuing Grant
Depelopement of data-driven ground-motion models based on integration of observed and simulated strong-motion data
基于观测与模拟强震动数据集成的数据驱动地震动模型开发
- 批准号:
20H00292 - 财政年份:2020
- 资助金额:
$ 35.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Learning Intuitive Models of Motion
学习直观的运动模型
- 批准号:
518876-2018 - 财政年份:2020
- 资助金额:
$ 35.6万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing models to simulate information processing and internal representations of human visual motion perception
开发模型来模拟信息处理和人类视觉运动感知的内部表示
- 批准号:
20H00603 - 财政年份:2020
- 资助金额:
$ 35.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
3D Cardiac Motion in Experimental Models of Pulmonary Arterial Hypertension
肺动脉高压实验模型中的 3D 心脏运动
- 批准号:
2290816 - 财政年份:2019
- 资助金额:
$ 35.6万 - 项目类别:
Studentship