Percolative Models

渗透模型

基本信息

  • 批准号:
    0071635
  • 负责人:
  • 金额:
    $ 4.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-15 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

0071635ZhangThis project concentrates on percolation theory, a mathematical theory used to describe transitions of physical systems. Percolation theory has a variety of applications to solid physics, biology, computer science, and geology. A percolation process typically depends on one or more parameters, and a dramatic change in physical properties may occur as a critical parameter value is passed. This research will focus on the behaviors of percolative models in the following three areas: percolation model, first passage percolation model, and the percolative process. More precisely, the research makes use of probability theory (the moment estimations, the ergodic theory, correlation and martingale inequalities and stochastic ordering), the CLT theorem, graph theory (duality, the fractal dimension), combinatorics (partition lattices, distributive lattices), and functional analysis (the real analyticity). The project will use these mathematical tools to advance in a rigorous understanding of the critical phenomena.This project concentrates on percolation, a mathematical model used to describe transitions of physical systems. Percolation theory has a variety of applications to solid physics, biology, computer science, and geology. A percolation process typically depends on one or more parameters, and a dramatic change in physical properties may occur as a critical parameter value is passed. For example, suppose we immerse a large porous solid in a bucket water. Clearly, how water penetrates the solid depends on the size of the pores of the solid. A simple mathematical model of such a process is defined by taking the pores to be distributed in some regular manner, and to be open or closed with probabilities p or 1-p. There is a critical threshold, for probability at which the behavior changes abruptly, below which the water penetration is only superficial and above which it is arbitrarily deep. The behavior near the critical threshold is more complicated. One of the most challenging problems is to give a mathematical description of deep penetration near the critical threshold. This research will focus on three areas: percolation model, first passage percolation model, and percolative process. In particular, the project will investigate mathematically rigorous exact solutions for the percolation process. The research makes use of probability theory, graph theory, combinatorics and functional analysis. The project will use these mathematical tools to advance in a rigorous understanding of the critical phenomena.
0071635张本项目集中于渗流理论,一种用于描述物理系统转变的数学理论。 逾渗理论在固体物理学、生物学、计算机科学和地质学中有着广泛的应用。 逾渗过程通常取决于一个或多个参数,并且当通过临界参数值时,可能发生物理性质的显著变化。 本研究主要从以下三个方面来研究扩散模型的行为:渗流模型、首次通过渗流模型和扩散过程。 更确切地说,研究利用概率论(矩估计,遍历理论,相关和鞅不等式和随机序),CLT定理,图论(对偶,分形维数),组合学(划分格,分配格),和功能分析(真实的解析性)。 该项目将使用这些数学工具来推进对临界现象的严格理解。该项目专注于渗透,一种用于描述物理系统转变的数学模型。 逾渗理论在固体物理学、生物学、计算机科学和地质学中有多种应用。 逾渗过程通常取决于一个或多个参数,并且当通过临界参数值时,可能发生物理性质的显著变化。 例如,假设我们将一个大的多孔固体浸入水桶中。 显然,水如何渗透固体取决于固体孔隙的大小。 这种过程的一个简单的数学模型是这样定义的:取孔隙以某种规则的方式分布,并以概率p或1-p打开或关闭。对于行为突然改变的概率,存在一个临界阈值,低于该阈值,水渗透只是表面的,高于该阈值,水渗透是任意深度的。 临界阈值附近的行为更为复杂。最具挑战性的问题之一是给出临界阈值附近深穿透的数学描述。 本研究将集中在三个方面:渗流模型,第一通道渗流模型,和分解过程。 特别是,该项目将研究渗透过程的数学严格的精确解。 研究中运用了概率论、图论、组合数学和泛函分析等理论。 该项目将使用这些数学工具来推进对关键现象的严格理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Zhang其他文献

Gated recurrent unit model for a sequence tagging problem
序列标记问题的门控循环单元模型
Identification and functional perspective of a novel HLA-A allele: A*0279
新型 HLA-A 等位基因的鉴定和功能视角:A*0279
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Fangfang Liu;Shan Wang;Y. Ye;Huagang Zhang;Yu Zhang;Weifeng Chen
  • 通讯作者:
    Weifeng Chen
Efficacy of mesalazine in combination with bifid triple viable capsules on ulcerative colitis and the resultant effect on the inflammatory factors.
美沙拉秦联合双歧三联活菌胶囊治疗溃疡性结肠炎的疗效及其对炎症因子的影响。
One-step glass-like coating of polycarbonate for seamless DNA purification and amplification on an integrated monolithic microdevice
一步式玻璃状聚碳酸酯涂层,用于在集成整体式微型设备上进行无缝 DNA 纯化和扩增
  • DOI:
    10.1016/j.snb.2014.06.078
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Yu Zhang;I. Yoo;N. Lee
  • 通讯作者:
    N. Lee
Comprehensive Assessment of the Effect of Urban Built-Up Land Expansion and Climate Change on Net Primary Productivity
城市建设用地扩张和气候变化对净初级生产力影响的综合评估
  • DOI:
    10.1155/2020/8489025
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Pengyan Zhang;Yanyan Li;Wenlong Jing;Dan Yang;Yu Zhang;Ying Liu;Wenliang Geng;Tianqi Rong;Jingwen Shao;Jiaxin Yang;Mingzhou Qin
  • 通讯作者:
    Mingzhou Qin

Yu Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Zhang', 18)}}的其他基金

CAREER: When Reality Fails Expectations: Containing Reflective Domain Models for Human-Aware Planning and Learning of Robotic Teammates
职业:当现实低于预期时:包含用于机器人队友的人类意识规划和学习的反射域模型
  • 批准号:
    2047186
  • 财政年份:
    2021
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
PFI-TT: Gravity Satellite Observation System for Water Resource Management
PFI-TT:水资源管理重力卫星观测系统
  • 批准号:
    2044704
  • 财政年份:
    2021
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID--Forensic Analysis of Flood-Wind-Rainfall Interactions during Hurricanes Florence and Michael
合作研究:RAPID——佛罗伦斯和迈克尔飓风期间洪水-风-降雨相互作用的法证分析
  • 批准号:
    1909367
  • 财政年份:
    2019
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
EAGER: Reconciling Model Discrepancies in Human-Robot Teams
EAGER:协调人机团队中的模型差异
  • 批准号:
    1844524
  • 财政年份:
    2018
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
Evolutionary Virtual Expert System
进化虚拟专家系统
  • 批准号:
    EP/R029741/1
  • 财政年份:
    2018
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Research Grant
Fatigue Behavior of Functionally Graded Ceramics­ Synthesis, Experiments, and Analysis
功能梯度陶瓷的疲劳行为合成、实验和分析
  • 批准号:
    0758530
  • 财政年份:
    2008
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Equipment to Establish a Distributed Intelligent Agent Systems Infrastructure for Research and Education at Trinity University
MRI:采购设备,为三一大学的研究和教育建立分布式智能代理系统基础设施
  • 批准号:
    0821585
  • 财政年份:
    2008
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
REU Site: Multi-Agent Simulations of Social Systems
REU 站点:社会系统的多智能体模拟
  • 批准号:
    0755405
  • 财政年份:
    2008
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Continuing Grant
RUI: Percolative models
RUI:渗透模型
  • 批准号:
    0706257
  • 财政年份:
    2007
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
RUI: Percolation Model
RUI:渗透模型
  • 批准号:
    0405150
  • 财政年份:
    2004
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Continuing Grant
Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
  • 批准号:
    2608661
  • 财政年份:
    2025
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Studentship
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
  • 批准号:
    AH/Z50550X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Research Grant
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
  • 批准号:
    DP240102104
  • 财政年份:
    2024
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Discovery Projects
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
  • 批准号:
    MR/Y019717/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 4.37万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了