RUI: Percolation Model

RUI:渗透模型

基本信息

  • 批准号:
    0405150
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2007-08-31
  • 项目状态:
    已结题

项目摘要

0405150Zhang Percolative models form a very active subfield of probability theory. They have drawn much of their inspiration and motivation from physics, biology and computer science. They have also been used heavily in physics, biology, industry, and computer science. This project focuses on the following percolation questions: General percolation model: (a) The power laws and scaling relations. (b) The central limit theorems for the incipient infinite cluster. (c) Percolation on arbitrary words. (d) On the infinite differentiability of the right edge in oriented percolation. First passage percolation: (a) Non-differentiability of the time constant. (b) The large deviations. The research makes use of probability theorems (martingale, Markov chains, CLT theorem, correlation inequalities), graph theorems (duality, lattice surfaces, planarity), combinatorics (partition lattice, renormalization) and functional analysis (complex variables). The project has a broad impact on research, education and dissemination to advance scientific and technological understanding in the following ways: First, percolation theory is one of most important subjects in mathematics. In fact, issues and open questions in percolation theory are easy to state, but whose solutions are apparently difficult and require innovative methods. Furthermore, percolation theory is also directly applicable in biology, industry, and computer science. Zhang presents six traditional problems in this field and proposed new methods to solve them. Second, the proposal promotes teaching experiences for Zhang's undergraduate students in areas of engineering, computer science and mathematics. It also offers an opportunity for the students to conduct research activities on percolation problems. Moreover, the proposal also enhances scientific and technological understanding. Since percolation theory involves numerical computations and simulations, technological advances in computing science are required.
张氏渗流模型是概率论中一个非常活跃的分支。他们的灵感和动力主要来自物理学、生物学和计算机科学。它们还被广泛应用于物理、生物、工业和计算机科学。本项目主要研究以下渗流问题:一般渗流模型:(A)幂定律和标度关系。(B)初始无限团簇的中心极限定理。(C)对任意词语的渗漏。(D)关于定向渗流中右边缘的无限可微性。首次通过渗流:(A)时间常数的不可微性。(B)偏差较大。这项研究使用了概率理论(鞅、马尔可夫链、CLT定理、相关不等式)、图论(对偶、格子曲面、平面性)、组合学(分拆格、重整化)和泛函分析(复变量)。该项目对研究、教育和传播产生了广泛的影响,在以下方面促进了对科学技术的理解:第一,渗流理论是数学中最重要的学科之一。事实上,渗流理论中的问题和开放问题很容易陈述,但解决这些问题显然很困难,需要创新的方法。此外,渗流理论也直接适用于生物学、工业和计算机科学。张提出了这一领域的六个传统问题,并提出了解决这些问题的新方法。其次,该提案促进了张的本科生在工程、计算机科学和数学领域的教学经验。它还为学生提供了一个开展渗流问题研究活动的机会。此外,该建议还增进了对科学技术的理解。由于渗流理论涉及数值计算和模拟,因此需要计算科学的技术进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Zhang其他文献

System and Incentive Design in Socio-technical Networks
社会技术网络中的系统和激励设​​计
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zhang
  • 通讯作者:
    Yu Zhang
Active and Passive Microwave Data Fusion Based Sea Ice Concentration Estimation
基于主动和被动微波数据融合的海冰浓度估计
Lifted Heegaard Surfaces and Virtually Haken Manifolds
  • DOI:
    10.1142/s0218216512500733
  • 发表时间:
    2010-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Zhang
  • 通讯作者:
    Yu Zhang
Rational Analysis of Self-Alignment Force of Reactive Additive Monomer with Multiple Methods
Precision study of $ZZgamma$ production including Z-boson leptonic decays at the ILC
ILC 中 ZZ 伽马产生(包括 Z 玻色子轻子衰变)的精确研究
  • DOI:
    10.1140/epjc/s10052-016-3919-x
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Yu Zhang;Peng-Fei Duan;Wen-Gan Ma;Ren-You Zhang;Chong Chen
  • 通讯作者:
    Chong Chen

Yu Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Zhang', 18)}}的其他基金

CAREER: When Reality Fails Expectations: Containing Reflective Domain Models for Human-Aware Planning and Learning of Robotic Teammates
职业:当现实低于预期时:包含用于机器人队友的人类意识规划和学习的反射域模型
  • 批准号:
    2047186
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
PFI-TT: Gravity Satellite Observation System for Water Resource Management
PFI-TT:水资源管理重力卫星观测系统
  • 批准号:
    2044704
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID--Forensic Analysis of Flood-Wind-Rainfall Interactions during Hurricanes Florence and Michael
合作研究:RAPID——佛罗伦斯和迈克尔飓风期间洪水-风-降雨相互作用的法证分析
  • 批准号:
    1909367
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Reconciling Model Discrepancies in Human-Robot Teams
EAGER:协调人机团队中的模型差异
  • 批准号:
    1844524
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Evolutionary Virtual Expert System
进化虚拟专家系统
  • 批准号:
    EP/R029741/1
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Fatigue Behavior of Functionally Graded Ceramics­ Synthesis, Experiments, and Analysis
功能梯度陶瓷的疲劳行为合成、实验和分析
  • 批准号:
    0758530
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of Equipment to Establish a Distributed Intelligent Agent Systems Infrastructure for Research and Education at Trinity University
MRI:采购设备,为三一大学的研究和教育建立分布式智能代理系统基础设施
  • 批准号:
    0821585
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Multi-Agent Simulations of Social Systems
REU 站点:社会系统的多智能体模拟
  • 批准号:
    0755405
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Percolative models
RUI:渗透模型
  • 批准号:
    0706257
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Percolative Models
渗透模型
  • 批准号:
    0071635
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Development of Heat Transfer Model for Connected Space Using Percolation Theory
利用渗流理论开发连通空间传热模型
  • 批准号:
    20K20971
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A directed percolation model
定向渗透模型
  • 批准号:
    550252-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Testing Stress Percolation as a Model for Stress Transmission in Rocks
测试应力渗透作为岩石中应力传递的模型
  • 批准号:
    1417218
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Unified understanding of laser breakdown in the vicinity of threshold by the percolation model
逾渗模型对阈值附近激光击穿的统一认识
  • 批准号:
    25610173
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Application of the percolation model in the fracture phenomenon of wood
渗流模型在木材断裂现象中的应用
  • 批准号:
    22580185
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Complete Damage Percolation Model to Predict Ductile Fracture in Sheet Materials
用于预测板材延性断裂的完整损伤渗流模型
  • 批准号:
    363210-2008
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Complete Damage Percolation Model to Predict Ductile Fracture in Sheet Materials
用于预测板材延性断裂的完整损伤渗流模型
  • 批准号:
    363210-2008
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
A Complete Damage Percolation Model to Predict Ductile Fracture in Sheet Materials
用于预测板材延性断裂的完整损伤渗流模型
  • 批准号:
    363210-2008
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Predicting Physical Properties of Fluid-Containing Rocks from Percolation Model Results
根据渗流模型结果预测含流体岩石的物理性质
  • 批准号:
    0409279
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Percolation Model of Phase Transitions in the Central Nervous Systems during Perceptual Information Processing
感知信息处理过程中中枢神经系统相变的渗透模型
  • 批准号:
    0130352
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了