Investigating Nonlinear Dynamics with Topological Methods
用拓扑方法研究非线性动力学
基本信息
- 批准号:0071859
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is an investigation of the interplay of topology and nonlinear dynamics from both applied and theoretical viewpoints. Complicatedtopology arises naturally in nonlinear dynamical systems and frequently"carries" the dynamics of the system. Understanding this topology isessential to understanding the dynamics and the long-term behavior of thesystem. Planned are (i) further theoretical study of the topology presentin "most" (i.e., generic) dynamical systems with a given property, (ii)applied study of stirring and turbulence (with chemical engineers atRutgers), (iii) theoretical and applied study of area-preserving systems,(iv) an investigation of how topology and invariant measures arerelated in one-dimesional dynamical systems, and (v) further study oftopological horseshoes (with J. A. Yorke and others from the Marylandgroup). The project builds on work already done by the investigator bothalone and in collaboration with other mathematicians and scientists. Thetools of both topology and dynamical systems are needed and will be usedto carry out the project. Theoretical results concerning stirring will bebacked up by actual experiment and observation in the lab. Whenever a nonlinear dynamical system, such as the weather, or the motion of different fluids as they are stirred, or the solar system, is"operating", interesting topology arises as sets are mapped back acrossthemselves. Understanding these sets is crucial to understanding thecomplicated behavior of nonlinear systems. Sometimes the complicatedtopology can be observed as it forms, and is a marker for certain kindsof complicated dynamics. Can this be made precise? Can it be "quantified"?Consider stirring, a phenomenon of special interest to the investigator,for example. Stirring occurs in every kitchen, and seems to be a simpleprocess. But this is far from the case: Stirring occurs in industrialsettings and in nature in many different contexts as chemicals ormedicines, or hot and cold air, or hot and cold water, are mixed. Mostoften in industry achieving homogeneity of the mixed substance efficientlyis the goal. Experimental and simulated results by chemical engineersdemonstrate that those processes used today do not result in homogeneity.How can those processes be improved? That is one of the problems to whichthe results of this project should be applicable. More generally, theproject planned is a study of the topology of complicated dynamicalsystems, and both the implications of the presence of complicated topologyfor nonlinear systems and vice versa.
该项目从应用和理论两个角度研究拓扑学和非线性动力学的相互作用。复杂拓扑在非线性动力系统中自然产生,并且经常“携带”系统的动力学。理解这种拓扑结构对于理解这种结构的动力学和长期行为是至关重要的。计划是(i)对“大多数”拓扑结构的进一步理论研究(即,(ii)搅拌和湍流的应用研究(与罗格斯大学的化学工程师合作),(iii)面积保持系统的理论和应用研究,(iv)一维动力系统中拓扑和不变测度之间关系的研究,(v)拓扑马蹄铁的进一步研究(与J.A. Yorke和其他来自马里兰州的人)。该项目的基础上已经完成的工作由调查bothalone和与其他数学家和科学家合作。拓扑学和动力系统的工具都是需要的,并将用于执行该项目。有关搅拌的理论结果将得到实验室实际实验和观察的支持。 每当一个非线性动力学系统,如天气,或不同流体的运动,因为他们被搅拌,或太阳系,是“操作”,有趣的拓扑结构出现作为集映射回本身。理解这些集合对于理解非线性系统的复杂行为至关重要。有时,复杂的拓扑结构可以在它形成时观察到,并且是某些复杂动力学的标志。这可以精确吗?可以“量化”吗?例如,考虑搅拌,这是研究者特别感兴趣的现象。搅拌发生在每个厨房,似乎是一个简单的过程。但事实远非如此:搅拌发生在工业环境中,也发生在自然界中许多不同的环境中,如化学品或药物,或冷热空气,或冷热水混合。在工业中,最常见的目标是有效地实现混合物质的均匀性。化学工程师的实验和模拟结果表明,目前使用的那些工艺不能得到均匀的结果。如何改进这些工艺?这是本项目的结果应该适用的问题之一。更一般地说,计划的项目是复杂动态系统的拓扑结构的研究,以及复杂拓扑结构对非线性系统的影响,反之亦然。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Judy Kennedy其他文献
Inverse limits with bonding functions whose graphs are arcs
- DOI:
10.1016/j.topol.2015.04.009 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:
- 作者:
Iztok Banič;Judy Kennedy - 通讯作者:
Judy Kennedy
The Lelek Fan as the Inverse Limit of Intervals with a Single Set-Valued Bonding Function Whose Graph is an Arc
- DOI:
10.1007/s00009-023-02323-3 - 发表时间:
2023-03-16 - 期刊:
- 影响因子:1.200
- 作者:
Iztok Banič;Goran Erceg;Judy Kennedy - 通讯作者:
Judy Kennedy
Connectedness and inverse limits with set-valued functions on intervals
- DOI:
10.1016/j.topol.2017.01.011 - 发表时间:
2017-04-15 - 期刊:
- 影响因子:
- 作者:
Sina Greenwood;Judy Kennedy;Michael Lockyer - 通讯作者:
Michael Lockyer
Minimal Non-invertible Maps on the Pseudo-Circle
- DOI:
10.1007/s10884-020-09877-w - 发表时间:
2020-08-25 - 期刊:
- 影响因子:1.300
- 作者:
Jan P. Boroński;Judy Kennedy;Xiao-Chuan Liu;Piotr Oprocha - 通讯作者:
Piotr Oprocha
Quotients of Dynamical Systems and Chaos on the Cantor Fan
- DOI:
10.1007/s10883-024-09708-x - 发表时间:
2024-08-30 - 期刊:
- 影响因子:0.800
- 作者:
Iztok Banič;Goran Erceg;Judy Kennedy;Van Nall - 通讯作者:
Van Nall
Judy Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Judy Kennedy', 18)}}的其他基金
U.S.-Polish Workshop: Geometric Methods in Dynamical Systems
美国-波兰研讨会:动力系统中的几何方法
- 批准号:
0410345 - 财政年份:2004
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Exotic Topology in Non-Pathological Dynamical Systems
数学科学:非病理动力系统中的奇异拓扑
- 批准号:
9208201 - 财政年份:1992
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Indecomposable Continua in DynamicalSystems
数学科学:动力系统中的不可分解连续体
- 批准号:
9006931 - 财政年份:1990
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Fellowship
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
- 批准号:
2350356 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Probing Intermolecular Dynamics with Nonlinear Ultrafast THz Spectroscopy
用非线性超快太赫兹光谱探测分子间动力学
- 批准号:
2316042 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Coherent Control of Nonlinear Schrodinger Dynamics in the Presence of Uncertainty
博士后奖学金:MPS-Ascend:不确定性情况下非线性薛定谔动力学的相干控制
- 批准号:
2316622 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Fellowship Award
CAREER: Modeling the Loosening of Bolted Joints due to Nonlinear Dynamics of Structural Assemblies
职业:对结构组件非线性动力学引起的螺栓接头松动进行建模
- 批准号:
2237715 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Nonlinear Optical Analysis of Molecular Composition and Dynamics within Heterogeneous Assemblies
异质组装体中分子组成和动力学的非线性光学分析
- 批准号:
2305178 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
A Leap in the Dynamics Study of Liquid Interface by Evolved Ultrafast Nonlinear Spectroscopy
演化超快非线性光谱学在液体界面动力学研究中的飞跃
- 批准号:
23H00292 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




